
Agilent Technologies
Signal Generators

E448C ESG RF

E8267D PSG Microwave

N5162A/82A MXG RF
Creating and Downloading
Waveform Files
Agilent Technologies

Creating and Downloading Waveform Files

Notices
© Agilent Technologies, Inc. 2006 - 2011

No part of this manual may be reproduced in
any form or by any means (including elec-
tronic storage and retrieval or translation
into a foreign language) without prior agree-
ment and written consent from Agilent
Technologies, Inc. as governed by United
States and international copyright laws.

Manual Part Number
E4400-90627

Edition
October 2011

Printed in USA

Agilent Technologies, Inc.
3501 Stevens Creek Blvd.
Santa Clara, CA 95052 USA

Warranty

The material contained in this docu-
ment is provided “as is,” and is sub-
ject to being changed, without notice,
in future editions. Further, to the max-
imum extent permitted by applicable
law, Agilent disclaims all warranties,
either express or implied, with regard
to this manual and any information
contained herein, including but not
limited to the implied warranties of
merchantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or per-
formance of this document or of any
information contained herein. Should
Agilent and the user have a separate
written agreement with warranty
terms covering the material in this
document that conflict with these
terms, the warranty terms in the sep-
arate agreement shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a license
and may be used or copied only in accor-
dance with the terms of such license.

Restricted Rights Legend
U.S. Government Restricted Rights. Soft-
ware and technical data rights granted to
the federal government include only those
rights customarily provided to end user cus-
tomers. Agilent provides this customary
commercial license in Software and techni-
cal data pursuant to FAR 12.211 (Technical
Data) and 12.212 (Computer Software) and,
for the Department of Defense, DFARS
252.227-7015 (Technical Data - Commercial
Items) and DFARS 227.7202-3 (Rights in
Commercial Computer Software or Com-
puter Software Documentation).

Safety Notices

CAUTION

A CAUTION notice denotes a haz-
ard. It calls attention to an operat-
ing procedure, practice, or the like
that, if not correctly performed or
adhered to, could result in damage
to the product or loss of important
data. Do not proceed beyond a
CAUTION notice until the indicated
conditions are fully understood and
met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in personal injury or death. Do not
proceed beyond a WARNING
notice until the indicated condi-
tions are fully understood and
met.

Contents
Creating and Downloading Waveform Files

Overview of Downloading and Extracting Waveform Files .2

Waveform Data Requirements .3

Understanding Waveform Data .3
Bits and Bytes .3
LSB and MSB (Bit Order) .4

Little Endian and Big Endian (Byte Order) .4
Byte Swapping .6
DAC Input Values .6

2’s Complement Data Format .9
I and Q Interleaving .9

Waveform Structure . 11
File Header . 11

Marker File . 11
I/Q File . 13
Waveform . 13

Waveform Phase Continuity . 13

Phase Discontinuity, Distortion, and Spectral Regrowth . 13
Avoiding Phase Discontinuities . 14

Waveform Memory . 16
Memory Allocation . 18

Memory Size . 20

Commands for Downloading and Extracting Waveform Data . 22
Waveform Data Encryption. 22
File Transfer Methods . 23

SCPI Command Line Structure . 24
Commands and File Paths for Downloading and Extracting Waveform Data. 24
FTP Procedures . 28

Creating Waveform Data . 31

Code Algorithm . 31

Downloading Waveform Data . 37
Using Simulation Software . 38
Using Advanced Programming Languages . 40

Loading, Playing, and Verifying a Downloaded Waveform . 43

Loading a File from Non–Volatile Memory. 43
Playing the Waveform . 44
Verifying the Waveform . 45

Building and Playing Waveform Sequences . 45

Using the Download Utilities . 46

Downloading E443xB Signal Generator Files . 47
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files iii

Contents
E443xB Data Format . 48
Storage Locations for E443xB ARB files . 48

SCPI Commands . 50

Programming Examples. 50
C++ Programming Examples . 51
MATLAB Programming Examples . 72

Visual Basic Programming Examples . 79
HP Basic Programming Examples . 84

Troubleshooting Waveform Files . 91
Configuring the Pulse/RF Blank (Agilent MXG) . 92

Configuring the Pulse/RF Blank (ESG/PSG) . 92
 Agilent N516xA, N518xA, E44x8C, and E82x7D Signal Generators Programming Guideiv

Creating and Downloading Waveform Files

NOTE The ability to play externally created waveform data in the signal generator is available only
in the N5162A/82A with Option 651, 652 or 654, E4438C ESG Vector Signal Generators with
Option 001, 002, 601, or 602, and E8267D PSG Vector Signal Generators with Option 601 or
602.

On the Agilent MXG, the internal baseband generator speed upgrade Options 670, 671, and
672 are option upgrades that require Option 651 and 652 to have been loaded at the factory
(refer to the Data Sheet for more information). Any references to 651, 652, or 654 are
inclusive of 671, 672, and 674.

For the N5162A, the softkey menus and features mentioned in this manual are only available
through the Web–Enabled MXG or through SCPI commands. Refer to Programming Guide
and to the SCPI Command Reference.

This manual explains how to create Arb–based waveform data and download it into the signal
generator. This information is also available in the signal generator's Programming Guide.

• “Overview of Downloading and Extracting Waveform Files” on page 2

• “Understanding Waveform Data” on page 3

• “Waveform Structure” on page 11

• “Waveform Phase Continuity” on page 13

• “Waveform Memory” on page 16

• “Commands for Downloading and Extracting Waveform Data” on page 22

• “Creating Waveform Data” on page 31

• “Downloading Waveform Data” on page 37

• “Loading, Playing, and Verifying a Downloaded Waveform” on page 43

• “Using the Download Utilities” on page 46

• “Downloading E443xB Signal Generator Files” on page 47

• “Programming Examples” on page 50

• “Troubleshooting Waveform Files” on page 91
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 1

Creating and Downloading Waveform Files
Overview of Downloading and Extracting Waveform Files
Overview of Downloading and Extracting Waveform Files
The signal generator lets you download and extract waveform files. You can create these files either
external to the signal generator or by using one of the internal modulation formats (ESG/PSG only).
The signal generator also accepts waveforms files created for the earlier E443xB ESG signal generator
models. For file extractions, the signal generator encrypts the waveform file information. The
exception to encrypted file extraction is user–created I/Q data. The signal generator lets you extract
this type of file unencrypted. After extracting a waveform file, you can download it into another
Agilent signal generator that has the same option or software license required to play it. Waveform
files consist of three items:

1. I/Q data
2. Marker data
3. File header

NOTE This order of download is required, as the I/Q data downloads results in the overwriting of
all of these three parts of the file.

The signal generator automatically creates the marker file and the file header if the two items are not
part of the download. In this situation, the signal generator sets the file header information to
unspecified (no settings saved) and sets all markers to zero (off).

There are three ways to download waveform files: FTP, programmatically or using one of three
available free download utilities created by Agilent Technologies:

• N7622A Signal Studio Toolkit 2
http://www.agilent.com/find/signalstudio

• Agilent Waveform Download Assistant for use only with MATLAB
http://www.agilent.com/find/downloadassistant

• Intuilink for Agilent PSG/ESG Signal Generators
http://www.agilent.com/find/intuilink

NOTE Agilent Intuilink is not available for the Agilent MXG.
2 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data
Waveform Data Requirements

To be successful in downloading files, you must first create the data in the required format.

• Signed 2’s complement

• 2–byte integer values

• Input data range of −32768 to 32767

• Minimum of 60 samples per waveform (60 I and 60 Q data points)

• Interleaved I and Q data

• Big endian byte order

• The same name for the marker, header, and I/Q file

This is only a requirement if you create and download a marker file and or file header, otherwise
the signal generator automatically creates the marker file and or file header using the I/Q data
file name.

NOTE FTP can be used without programming commands to transfer files from the PC to the signal
generator or from the signal generator to the PC.

For more information, see “Waveform Structure” on page 11.

For more information on waveform data, see “Understanding Waveform Data” on page 3.

Understanding Waveform Data
The signal generator accepts binary data formatted into a binary I/Q file. This section explains the
necessary components of the binary data, which uses ones and zeros to represent a value.

Bits and Bytes

Binary data uses the base–two number system. The location of each bit within the data represents a
value that uses base two raised to a power (2n–1). The exponent is n − 1 because the first position is
zero. The first bit position, zero, is located at the far right. To find the decimal value of the binary
data, sum the value of each location:

1101 = (1 × 23) + (1 × 22) + (0 × 21) + (1 × 20)
= (1 × 8) + (1 × 4) + (0 × 2) + (1 × 1)
= 13 (decimal value)

Notice that the exponent identifies the bit position within the data, and we read the data from right
to left.

The signal generator accepts data in the form of bytes. Bytes are groups of eight bits:

01101110 = (0 ×27) + (1 × 26) + (1 × 25) + (0 × 24) +(1 ×23) + (1 × 22) + (1 × 21) + (0 × 20)
= 110 (decimal value)
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 3

Creating and Downloading Waveform Files
Understanding Waveform Data
The maximum value for a single unsigned byte is 255 (11111111 or 28−1), but you can use multiple
bytes to represent larger values. The following shows two bytes and the resulting integer value:

01101110 10110011= 28339 (decimal value)

The maximum value for two unsigned bytes is 65535. Since binary strings lengthen as the value
increases, it is common to show binary values using hexadecimal (hex) values (base 16), which are
shorter. The value 65535 in hex is FFFF. Hexadecimal consists of the values 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, A, B, C, D, E, and F. In decimal, hex values range from 0 to 15 (F). It takes 4 bits to represent a
single hex value.

For I and Q data, the signal generator uses two bytes to represent an integer value.

LSB and MSB (Bit Order)

Within groups (strings) of bits, we designate the order of the bits by identifying which bit has the
highest value and which has the lowest value by its location in the bit string. The following is an
example of this order.

Little Endian and Big Endian (Byte Order)

When you use multiple bytes (as required for the waveform data), you must identify their order. This
is similar to identifying the order of bits by LSB and MSB. To identify byte order, use the terms little
endian and big endian. These terms are used by designers of computer processors.

1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101

6 = 0110 7 = 0111 8 = 1000 9 = 1001 A = 1010

B = 1011 C = 1100 D = 1101 E = 1110 F = 1111

Most Significant Bit (MSB) This bit has the highest value (greatest weight) and is located at the far left of the bit
string.

Least Significant Bit (LSB) This bit has the lowest value (bit position zero) and is located at the far right of the
bit string.

 Intel is a registered trademark of Intel Corporation.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1

LSBMSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data
Bit Position

Because we are using 2 bytes of data, the LSB appears in the second byte.
4 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data
Notice in the previous figure that the LSB and MSB positioning changes with the byte order. In little
endian order, the LSB and MSB are next to each other in the bit sequence.

NOTE For I/Q data downloads, the signal generator requires big endian order. For each I/Q data
point, the signal generator uses four bytes (two integer values), two bytes for the I point and
two bytes for the Q point.

The byte order, little endian or big endian, depends on the type of processor used with your
development platform. Intel processors and its clones use little endian. (Intel© is a U.S. registered
trademark of Intel Corporation.) Sun™ and Motorola processors use big endian. The Apple PowerPC
processor, while big endian oriented, also supports the little endian order. Always refer to the
processor’s manufacturer to determine the order they use for bytes and if they support both, to
understand how to ensure that you are using the correct byte order.

Development platforms include any product that creates and saves waveform data to a file. This
includes Agilent Technologies Advanced Design System EDA software, C++, MATLAB, and so forth.

The byte order describes how the system processor stores integer values as binary data in memory.
If you output data from a little endian system to a text file (ASCII text), the values are the same as
viewed from a big endian system. The order only becomes important when you use the data in binary
format, as is done when downloading data to the signal generator.

 Sun is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other countries.

1 0 1 1 0 1 1 1 1 1 1 0 1 0 0 1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data
Bit Position

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data
Bit Position

Big Endian Order

Little Endian Order

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex values = E9 B7

Hex values = B7 E9

LSB MSB

MSB LSB

The lowest order byte that contains bits 0–7 comes first.

The highest order byte that contains bits 8–15 comes first.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 5

Creating and Downloading Waveform Files
Understanding Waveform Data
Byte Swapping

While the processor for the development platform determines the byte order, the recipient of the data
may require the bytes in the reverse order. In this situation, you must reverse the byte order before
downloading the data. This is commonly referred to as byte swapping. You can swap bytes either
programmatically or by using either the Agilent Technologies Intuilink for ESG/PSG Signal Generator
software, or the Signal Studio Toolkit 2 software. For the signal generator, byte swapping is the
method to change the byte order of little endian to big endian. For more information on little endian
and big endian order, see “Little Endian and Big Endian (Byte Order)” on page 4.

The following figure shows the concept of byte swapping for the signal generator. Remember that we
can represent data in hex format (4 bits per hex value), so each byte (8 bits) in the figure shows two
example hex values.

To correctly swap bytes, you must group the data to maintain the I and Q values. One common
method is to break the two–byte integer into one–byte character values (0–255). Character values use
8 bits (1 byte) to identify a character. Remember that the maximum unsigned 8–bit value is 255 (28
− 1). Changing the data into character codes groups the data into bytes. The next step is then to
swap the bytes to align with big endian order.

NOTE The signal generator always assumes that downloaded data is in big endian order, so there is
no data order check. Downloading data in little endian order will produce an undesired
output signal.

DAC Input Values

The signal generator uses a 16–bit DAC (digital–to–analog convertor) to process each of the 2–byte
integer values for the I and Q data points. The DAC determines the range of input values required
from the I/Q data. Remember that with 16 bits we have a range of 0–65535, but the signal generator
divides this range between positive and negative values:

• 32767 = positive full scale output
• 0 = 0 volts
• −32768 = negative full scale output

Because the DAC’s range uses both positive and negative values, the signal generator requires signed
input values. The following list illustrates the DAC’s input value range.

E9 B7 53 2A

0 1 2 3

E9B7 532A

0 1 2 3

I data = bytes 0 and 1
Q data = bytes 2 and 3

Little Endian

Big Endian

16–bit integer values (2 bytes = 1 integer value)

I Q
6 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data
Notice that it takes only 15 bits (215) to reach the Vmax (positive) or Vmin (negative) values. The
MSB determines the sign of the value. This is covered in “2’s Complement Data Format” on page 9.

Using E443xB ESG DAC Input Values

In this section, the words signal generator with or without a model number refer to an N5162A/82A
Agilent MXG, E4438C ESG, E8267D PSG. The signal generator input values differ from those of the
earlier E443xB ESG models. For the E443xB models, the input values are all positive (unsigned) and
the data is contained within 14 bits plus 2 bits for markers. This means that the E443xB DAC has a
smaller range:

• 0 = negative full scale output
• 8192 = 0 volts
• 16383 = positive full scale output

Although the signal generator uses signed input values, it accepts unsigned data created for the
E443xB and converts it to the proper DAC values. To download an E443xB files to the signal
generator, use the same command syntax as for the E443xB models. For more information on
downloading E443xB files, see “Downloading E443xB Signal Generator Files” on page 47.

Scaling DAC Values

The signal generator uses an interpolation algorithm (sampling between the I/Q data points) when
reconstructing the waveform. For common waveforms, this interpolation can cause overshoot, which
may exceed the limits of the signal process path’s internal number representation, causing arithmatic
overload. This will be reported as either a data path overload error (N5162A/82A) or a DAC
over–range error condition (E4438C/E8267D). Because of the interpolation, the error condition can
occur even when all the I and Q values are within the DAC input range. To avoid the DAC over–range
problem, you must scale (reduce) the I and Q input values, so that any overshoot remains within the
DAC range.

Voltage DAC Range Input Range Binary Data Hex Data

Vmax

Vmin

0 Volts

32767

–32768

0

01111111 11111111

00000000 00000000
00000000 00000001

11111111 11111111

10000000 00000000

1

-1

7FFF

0001
0000
FFFF

80000

32767

65535

32766

32768
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 7

Creating and Downloading Waveform Files
Understanding Waveform Data
NOTE Whenever you interchange files between signal generator models, ensure that all scaling is
adequate for that signal generator’s waveform.

There is no single scaling value that is optimal for all waveforms. To achieve the maximum dynamic
range, select the largest scaling value that does not result in a DAC over–range error. There are two
ways to scale the I/Q data:

• Reduce the input values for the DAC.
• Use the SCPI command :RADio:ARB:RSCaling <val> to set the waveform amplitude as a

percentage of full scale.

NOTE The signal generator factory preset for scaling is 70%. If you reduce the DAC input values,
ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an appropriate
setting that accounts for the reduced values.

To further minimize overshoot problems, use the correct FIR filter for your signal type and adjust
your sample rate to accommodate the filter response.

DAC over–range No over–range

Interpolation

Interpolation

–32768

32767

Scaling effect
Max input value
8 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Understanding Waveform Data
NOTE FIR filter capability is only available on the N5162A/82A with Option 651, 652, or 654, the
E4438C with Option 001, 002, 601, or 602, and on the E8267D with Option 601 or 602.

2’s Complement Data Format

The signal generator requires signed values for the input data. For binary data, two’s complement is
a way to represent positive and negative values. The most significant bit (MSB) determines the sign.

• 0 equals a positive value (01011011 = 91 decimal)
• 1 equals a negative value (10100101 = −91 decimal)

Like decimal values, if you sum the binary positive and negative values, you get zero. The one
difference with binary values is that you have a carry, which is ignored. The following shows how to
calculate the two’s complement using 16–bits. The process is the same for both positive and negative
values.

I and Q Interleaving

When you create the waveform data, the I and Q data points typically reside in separate arrays or
files. The signal generator requires a single I/Q file for waveform data playback. The process of
interleaving creates a single array with alternating I and Q data points, with the Q data following the
I data. This array is then downloaded to the signal generator as a binary file. The interleaved file
comprises the waveform data points where each set of data points, one I data point and one Q data
point, represents one I/Q waveform point.

Convert the decimal value to binary.

23710 = 01011100 10011110

Notice that 15 bits (0–14) determine the value and bit 16 (MSB) indicates a positive value.
Invert the bits (1 becomes 0 and 0 becomes 1).

10100011 01100001

Add one to the inverted bits. Adding one makes it a two’s complement of the original binary value.

10100011 01100001
+ 00000000 00000001
10100011 01100010

The MSB of the resultant is one, indicating a negative value (−23710).
Test the results by summing the binary positive and negative values; when correct, they produce zero.

 01011100 10011110
+ 10100011 01100010
00000000 00000000
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 9

Creating and Downloading Waveform Files
Understanding Waveform Data
NOTE The signal generator can accept separate I and Q files created for the earlier E443xB ESG
models. For more information on downloading E443xB files, see “Downloading E443xB Signal
Generator Files” on page 47.

The following figure illustrates interleaving I and Q data. Remember that it takes two bytes (16 bits)
to represent one I or Q data point.

11001010 01110110 01110111 00111110I Data

Q Data 11101001 11001010 01011110 01110010

11001010 01110110 11101001 11001010 01110111 00111110 01011110 01110010

I Data Q DataI Data Q Data

Interleaved Binary Data

CA 76 E9 CA 77 3E 5E 72

Q Data Q DataI DataI Data

Interleaved Hex Data

Binary

Hex CA 76 77 3E

Binary

Hex E9 CA 5E 72

Waveform
data point

Waveform
data point

Waveform data point Waveform data point

MSB MSBLSB LSB
10 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Structure
Waveform Structure
To play back waveforms, the signal generator uses data from the following three files:

• File header
• Marker file
• I/Q file

All three files have the same name, the name of the I/Q data file, but the signal generator stores
each file in its respective directory (headers, markers, and waveform). For information on file
extractions, see “Commands for Downloading and Extracting Waveform Data” on page 22.

File Header

The file header contains settings for the ARB modulation format such as sample rate, marker polarity,
I/Q modulation attenuator setting and so forth. When you create and download I/Q data, the signal
generator automatically creates a file header with all saved parameters set to unspecified. With
unspecified header settings, the waveform either uses the signal generator default settings, or if a
waveform was previously played, the settings from that waveform. Ensure that you configure and save
the file header settings for each waveform.

NOTE If you have no RF output when you play back a waveform, ensure that the marker RF
blanking function has not been set for any of the markers. The marker RF blanking function
is a header parameter that can be inadvertently set active for a marker by a previous
waveform. To check for and turn RF blanking off manually, refer to “Configuring the
Pulse/RF Blank (Agilent MXG)” on page 92 and “Configuring the Pulse/RF Blank (ESG/PSG)”
on page 92.

Marker File

The marker file uses one byte per I/Q waveform point to set the state of the four markers either on
(1) or off (0) for each I/Q point. When a marker is active (on), it provides an output trigger signal to
the rear panel EVENT 1 connector (Marker 1 only) or and the AUX IO, event 2 connector pin
(Markers 1, 2, 3, or 4), that corresponds to the active marker number. (For more information on
active markers and their output trigger signal location, refer to your signal generator’s User’s Guide.)
Because markers are set at each waveform point, the marker file contains the same number of bytes
as there are waveform points. For example, for 200 waveform points, the marker file contains 200
bytes.

Although a marker point is one byte, the signal generator uses only bits 0–3 to configure the
markers; bits 4–7 are reserved and set to zero. The following example shows a marker byte.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 11

Creating and Downloading Waveform Files
Waveform Structure
The following example shows a marker binary file (all values in hex) for a waveform with 200 points.
Notice the first marker point, 0f, shows all four markers on for only the first waveform point.

If you create your own marker file, its name must be the same as the waveform file. If you download
I/Q data without a marker file, the signal generator automatically creates a marker file with all
points set to zero. For more information on markers, see the User’s Guide.

NOTE Downloading marker data using a file name that currently resides on the signal generator
overwrites the existing marker file without affecting the I/Q (waveform) file. However,
downloading just the I/Q data with the same file name as an existing I/Q file also overwrites
the existing marker file setting all bits to zero.

Marker Byte 0000 1 0 1 1

Binary
Hex

Marker Number Position4 3 2 1

Reserved

0000 0101

05
Sets markers 1 and 3 on for a waveform point

Example of Setting a Marker Byte

01 = Marker 1 on
05 = Markers 1 and 3 on
04 = Marker 3 on
00 = No active markers

0f = All markers on
12 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Phase Continuity
I/Q File

The I/Q file contains the interleaved I and Q data points (signed 16–bit integers for each I and Q
data point). Each I/Q point equals one waveform point. The signal generator stores the I/Q data in
the waveform directory.

NOTE If you download I/Q data using a file name that currently resides on the signal generator, it
also overwrites the existing marker file setting all bits to zero and the file header setting all
parameters to unspecified.

Waveform

A waveform consists of samples. When you select a waveform for playback, the signal generator loads
settings from the file header. When the ARB is on, it creates the waveform samples from the data in
the marker and I/Q (waveform) files. The file header, while required, does not affect the number of
bytes that compose a waveform sample. One sample contains five bytes:

To create a waveform, the signal generator requires a minimum of 60 samples. To help minimize
signal imperfections, use an even number of samples (for information on waveform continuity, see
“Waveform Phase Continuity” on page 13). When you store waveforms, the signal generator saves
changes to the waveform file, marker file, and file header.

Waveform Phase Continuity

Phase Discontinuity, Distortion, and Spectral Regrowth

The most common arbitrary waveform generation use case is to play back a waveform that is finite
in length and repeat it continuously. Although often overlooked, a phase discontinuity between the
end of a waveform and the beginning of the next repetition can lead to periodic spectral regrowth
and distortion.

For example, the sampled sinewave segment in the following figure may have been simulated in
software or captured off the air and sampled. It is an accurate sinewave for the time period it
occupies, however the waveform does not occupy an entire period of the sinewave or some multiple
thereof. Therefore, when repeatedly playing back the waveform by an arbitrary waveform generator, a
phase discontinuity is introduced at the transition point between the beginning and the end of the
waveform.

Repetitions with abrupt phase changes result in high frequency spectral regrowth. In the case of
playing back the sinewave samples, the phase discontinuity produces a noticeable increase in
distortion components in addition to the line spectra normally representative of a single sinewave.

I/Q Data Marker Data 1 Waveform Sample+ =
2 bytes I
(16 bits)

2 bytes Q
(16 bits)

1byte (8 bits)
Bits 4–7 reserved—Bits 0–3 set

5 bytes
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 13

Creating and Downloading Waveform Files
Waveform Phase Continuity
Avoiding Phase Discontinuities

You can easily avoid phase discontinuities for periodic waveforms by simulating an integer number of
cycles when you create your waveform segment.

NOTE If there are N samples in a complete cycle, only the first N–1 samples are stored in the
waveform segment. Therefore, when continuously playing back the segment, the first and Nth
waveform samples are always the same, preserving the periodicity of the waveform.

By adding off time at the beginning of the waveform and subtracting an equivalent amount of off
time from the end of the waveform, you can address phase discontinuity for TDMA or pulsed periodic
waveforms. Consequently, when the waveform repeats, the lack of signal present avoids the issue of
phase discontinuity.

However, if the period of the waveform exceeds the waveform playback memory available in the
arbitrary waveform generator, a periodic phase discontinuity could be unavoidable. N5110B Baseband
Studio for Waveform Capture and Playback alleviates this concern because it does not rely on the
signal generator waveform memory. It streams data either from the PC hard drive or the installed
PCI card for N5110B enabling very large data streams. This eliminates any restrictions associated
with waveform memory to correct for repetitive phase discontinuities. Only the memory capacity of
the hard drive or the PCI card limits the waveform size.

Sampled Sinewave with Phase Discontinuity

Waveform length

discontinuity
Phase
14 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Phase Continuity
The following figures illustrate the influence a single sample can have. The generated 3–tone test
signal requires 100 samples in the waveform to maintain periodicity for all three tones. The
measurement on the left shows the effect of using the first 99 samples rather than all 100 samples.
Notice all the distortion products (at levels up to −35 dBc) introduced in addition to the wanted
3–tone signal. The measurement on the right shows the same waveform using all 100 samples to
maintain periodicity and avoid a phase discontinuity. Maintaining periodicity removes the distortion
products.

Sampled Sinewave with No Discontinuity

Waveform length

Added sample

3–tone – 20 MHz Bandwidth3–tone – 20 MHz Bandwidth
Measured distortion = 35 dBc

Phase Continuity

Measured distortion = 86 dBc

Phase Discontinuity
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 15

Creating and Downloading Waveform Files
Waveform Memory
Waveform Memory
The signal generator provides two types of memory, volatile and non–volatile. You can download files
to either memory type.

NOTE The MXG’s ARB Waveform File Cache is limited to 128 files. Consequently, once the 128 file
cache limit has been reached, the waveform switching speed will be much slower for files
loaded into the volatile waveform memory (BBG).

Volatile Random access memory that does not survive cycling of the signal generator
power. This memory is commonly referred to as waveform memory (WFM1) or
waveform playback memory. To play back waveforms, they must reside in volatile
memory. The following file types share this memory:

Non–volatile Storage memory where files survive cycling the signal generator power. Files
remain until overwritten or deleted. To play back waveforms after cycling the
signal generator power, you must load waveforms from non–volatile waveform
memory (NVWFM) to volatile waveform memory (WFM1). On the Agilent MXG the
non–volatile memory is referred to as internal media and external media. The

Table 1 Signal Generators and Volatile Memory Types

Volatile Memory Type Model of Signal Generator

N5162A,
N5182A with
Option 651,
652, or 654

E4438C with

Option 0011,

0021, 601, or
602

1.Options 001 and 002 apply only to the E4438C ESG.

E8267D Option
601 or 602

I/Q x x x

Marker x x x

File header x x x

User PRAM – x x
16 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory
following file types share this memory:

The following figure on Figure 2- 1 on page 18 shows the locations within the signal generator for
volatile and non–volatile waveform data.

Table 2 Signal Generators and Non–Volatile Memory Types

Non–Volatile Memory Type Model of Signal Generator

N5162A,
N5182A with
Option 651,
652, or 654

E4438C with
Option 001,
002, 601, or
602

E8267D Option
601 or 602

I/Q x x x

Marker x x x

File header x x x

Sweep List x x x

User Data x x x

User PRAM – x x

Instrument State x x x

Waveform Sequences
(multiple I/Q files played
together)

x x x
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 17

Creating and Downloading Waveform Files
Waveform Memory
Figure 2-1

Memory Allocation

Volatile Memory

The signal generator allocates volatile memory in blocks of 1024 bytes. For example, a waveform file
with 60 samples (the minimum number of samples) has 300 bytes (5 bytes per sample × 60 samples),
but the signal generator allocates 1024 bytes of memory. If a waveform is too large to fit into 1024
bytes, the signal generator allocates additional memory in multiples of 1024 bytes. For example, the
signal generator allocates 3072 bytes of memory for a waveform with 500 samples (2500 bytes).

3 x 1024 bytes = 3072 bytes of memory

ARBI ARBQ NVARBQNVARBI

USER

HEADER MARKERS WAVEFORM

SEQ

SECUREWAVE

BBG1

E443xB Volatile E443xB Non–volatile
waveform data1 waveform data1

Non–volatile

Volatile waveform directory

HEADER MARKERS WAVEFORM SECUREWAVE

Root directory

Volatile waveform data

1For information on using the E443xB directories, see “Downloading E443xB Signal Generator Files” on page 47.
2The Agilent MXG uses an optional “USB media” to store non–volatile waveform data.
3The Agilent MXG internal non–volatile memory is referred to as “internal storage”.
4This NONVOLATILE directory shows the files with the same extensions as the USB media and is useful with ftp.

Waveform sequences

MXG (only) USB media:
File listing with extensions1, 2

NONVOLATILE

Agilent MXG (Only): 4

Non–volatile waveform data (internal storage1, 3)
18 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory
As shown in the examples, waveforms can cause the signal generator to allocate more memory than
what is actually used, which decreases the amount of available memory.

NOTE In the first block of data of volatile memory that is allocated for each waveform file, the file
header requires 512 bytes (N5162A/82A) or 256 bytes (E4438C/E8267D).

Non–Volatile Memory (Agilent MXG)

NOTE If the Agilent MXG’s external USB flash memory port is used, the USB flash memory can
provide actual physical storage of non–volatile data in the SECUREWAVE directory versus
the “virtual” only data.

ARB waveform encryption of proprietary information is supported on the external
non–volatile USB flash memory.

To copy unencrypted data files from an external media (as in USB Flash Drive [UFD]) for
playing on a signal generator, the full filename extension is required (i.e. .MARKER,
.HEADER, .WAVEFORM, etc.). For more information on unencrypted data, refer to
“Commands for Downloading and Extracting Waveform Data” on page 22. For more
information on how to work with files, refer to the User’s Guide.

To copy compatible licensed encrypted data files (i.e. .SECUREWAVE) from an external media,
download (copy) the files to the signal generator (refer to the User’s Guide for information
on how to work with files). When using the external media along with the signal generator’s
Use as or Copy File to Instrument softkey menus, encrypted data files can be automatically
detected by the Agilent MXG, regardless of the suffix (e.g. .wfm, .wvfm, and no suffix, etc.).
These various waveform files can be selected and played by the Agilent MXG. For more
information on encrypted data, refer to “Commands for Downloading and Extracting
Waveform Data” on page 22. When using the Copy File to Instrument, the signal generator
prompts the user to select between BBG Memory and Internal Storage memories as locations
to copy the files.

On the N5162A/82A, non–volatile files are stored on the non–volatile internal signal generator
memory (internal storage) or to an USB media, if available.

The Agilent MXG non–volatile internal memory is allocated according to a Microsoft compatible file
allocation table (FAT) file system. The Agilent MXG signal generator allocates non–volatile memory in
clusters according to the drive size (see Table 3 on page 20). For example, referring to Table 3 on
page 20, if the drive size is 15 MB and if the file is less than or equal to 4K bytes, the file uses only
one 4 KB cluster of memory. For files larger than 4 KB, and with a drive size of 15 MB, the signal
generator allocates additional memory in multiples of 4KB clusters. For example, a file that has
21,538 bytes consumes 6 memory clusters (24,000 bytes).

 Microsoft is a registered trademark of Microsoft Corporation.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 19

Creating and Downloading Waveform Files
Waveform Memory
For more information on default cluster sizes for FAT file structures, refer to Table 3 on page 20 and
to http://support.microsoft.com/.

Non–Volatile Memory (ESG/PSG)

The ESG/PSG signal generators allocate non–volatile memory in blocks of 512 bytes. For files less
than or equal to 512 bytes, the file uses only one block of memory. For files larger than 512 bytes,
the signal generator allocates additional memory in multiples of 512 byte blocks. For example, a file
that has 21,538 bytes consumes 43 memory blocks (22,016 bytes).

Memory Size

The amount of available memory, volatile and non–volatile, varies by option and the size of the other
files that share the memory. When we refer to waveform files, we state the memory size in samples
(one sample equals five bytes). The ESG and PSG baseband generator (BBG) options (001, 002, 601,
or 602) and the Agilent MXG baseband generator (BBG) Option (651, 652, and 654) contain the
waveform playback memory. Refer to Tables 4 on page 21 through Table 6 on page 22 for the
maximum available memory.

Table 3 Drive Size (logical volume)

Drive Size (logical volume) Cluster Size (Bytes)
(Minimum Allocation Size)

0 MB – 15 MB 4K

16 MB – 127 MB 2K

128 MB – 255 MB 4K

256 MB – 511 MB 8K

512 MB – 1023 MB 16K

1024 MB – 2048 MB 32K

2048 MB – 4096 MB 64K

4096 MB – 8192 MB 128K

8192 MB – 16384 MB 256K
20 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Waveform Memory
Volatile and Non–Volatile Memory (N5162A/82A)

Volatile Memory and Non–Volatile Memory (E4438C and E8267D Only)

NOTE When considering volatile memory, it is not necessary to keep track of marker data, as this
memory is consumed automatically and proportionally to the I/Q data created (i.e. 1 marker
byte for every 4 bytes of I/Q data).

On the E4438C and E8267D, the fixed file system overhead on the signal generator is used to store
directory information. When calculating the available volatile memory for waveform files it is
important to consider the fixed file system overhead for the volatile memory of your signal generator.

Table 4 N5162A/82A Volatile (BBG) and Non–Volatile (Internal Storage and USB Media) Memory

Volatile (BBG) Memory Non–Volatile (Internal Storage and USB
Media) Memory

Option Size Option Size

N5162A/82A1

1.On the N5162A/82A, 512 bytes is reserved for each waveform’s header file (i.e. The largest waveform that could
be played with a N5162A/82A with Option 019 (320 MB) is: 320 MB – 512 bytes = 319,999,488 MB.)

651/652/654 (BBG) 8 MSa (40 MB) Standard (N5182A) 800 MSa (4 GB)2

2.For serial numbers <MY4818xxxx, US4818xxxx, and SG4818xxxx, the persistent memory value = 512 MB.

019 (BBG) 64 MSa (320 MB) USB Flash Drive
(UFD)

user determined

Table 5 Fixed File System Overhead

Volatile (WFM1) Memory and Fixed File Overhead

Option Size Maximum
Number of
Files

(MaxNumFiles)

Memory (Bytes) Used for
Fixed File System

Overhead1

[16 + (44 x MaxNumFiles)]

1.The expression [16 + (44 x MaxNumFiles)] has been rounded up to nearest memory block (1024 bytes). (To find the I/Q waveform sample
size, this resulting value needs to be divided by 4.)

Memory Available
for Waveform
Samples

E4438C and E8267D

001, 601 (BBG) 8 MSa (40 MB) 1024 46,080 8,377,088 Samples

002 (BBG) 32 MSa (160 MB) 4096 181,248 33,509,120 Samples

602 (BBG) 64 MSa (320 MB) 8192 361,472 67,018,496 Samples
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 21

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Commands for Downloading and Extracting Waveform Data
You can download I/Q data, the associated file header, and marker file information (collectively called
waveform data) into volatile or non–volatile memory. For information on waveform structure, see
“Waveform Structure” on page 11.

The signal generator provides the option of downloading waveform data either for extraction or not
for extraction. When you extract waveform data, the signal generator may require it to be read out in
encrypted form. The SCPI download commands determine whether the waveform data is extractable.

If you use SCPI commands to download waveform data to be extracted later, you must use the
MEM:DATA:UNPRotected command. If you use FTP commands, no special command syntax is
necessary.

NOTE On the N5162A/82A, :MEM:DATA enables file extraction. On the N5162A/82A the
:MEM:DATA:UNPRotected command is not required to enable file extraction. For more
information, refer to the SCPI Command Reference.

You can download or extract waveform data created in any of the following ways:

• with signal simulation software, such as MATLAB or Agilent Advanced Design System (ADS)
• with advanced programming languages, such as C++, VB or VEE
• with Agilent Signal Studio software
• with the signal generator

Waveform Data Encryption

You can download encrypted waveform data extracted from one signal generator into another signal
generator with the same option or software license for the modulation format. You can also extract
encrypted waveform data created with software such as MATLAB or ADS, providing the data was
downloaded to the signal generator using the proper command.

When you generate a waveform from the signal generator’s internal ARB modulation format
(ESG/PSG only), the resulting waveform data is automatically stored in volatile memory and is
available for extraction as an encrypted file.

When you download an exported waveform using a Agilent Signal Studio software product, you can
use the FTP process and the securewave directory or SCPI commands, to extract the encrypted file
to the non–volatile memory on the signal generator. Refer to “File Transfer Methods” on page 23.

Table 6 E4438C and E8267D Non–Volatile (NVWFM) Memory

Non–Volatile (NVWFM) Memory

Option Size

E4438C and E8267D

Standard 3 MSa (15 MB)

005 (Hard disk) 1.2 GSa (6 GB)
22 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Encrypted I/Q Files and the Securewave Directory

The signal generator uses the securewave directory to perform file encryption (extraction) and
decryption (downloads). The securewave directory is not an actual storage directory, but rather a
portal for the encryption and decryption process. While the securewave directory contains file
names, these are actually pointers to the true files located in signal generator memory (volatile or
non–volatile). When you download an encrypted file, the securewave directory decrypts the file and
unpackages the contents into its file header, I/Q data, and marker data. When you extract a file, the
securewave directory packages the file header, I/Q data, and marker data and encrypts the waveform
data file. When you extract the waveform file (I/Q data file), it includes the other two files, so there
is no need to extract each one individually.

The signal generator uses the following securewave directory paths for file extractions and encrypted
file downloads:

Volatile /user/bbg1/securewave/file_name or swfm:file_name

Non–volatile /user/securewave or snvwfm1:file_name

NOTE To extract files (other than user–created I/Q files) and to download encrypted files, you
must use the securewave directory. If you attempt to extract previously downloaded
encrypted files (including Signal Studio downloaded files or internally created signal
generator files (ESG/PSG only)) without using the securewave directory, the signal generator
generates an error and displays:
ERROR: 221, Access Denied.

Encrypted I/Q Files and the Securewave Directory (Agilent MXG)

NOTE Header parameters of files stored on the Agilent MXG’s internal or USB media cannot be
changed unless the file is copied to the volatile BBG memory. For more information on
modifying header parameters, refer to the User’s Guide.

When downloading encrypted files (.SECUREWAVE) from the USB media that have had the file suffix
changed to something other than .SECUREWAVE, you must use the Use As or Copy File to Instrument
menus to play an encrypted waveform file in the signal generator.

File Transfer Methods
• SCPI using VXI–11 (VMEbus Extensions for Instrumentation as defined in VXI–11)
• SCPI over the GPIB or RS 232
• SCPI with sockets LAN (using port 5025)
• File Transfer Protocol (FTP)
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 23

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
SCPI Command Line Structure

The signal generator expects to see waveform data as block data (binary files). The IEEE standard
488.2–1992 section 7.7.6 defines block data. The following example shows how to structure a SCPI
command for downloading waveform data (#ABC represents the block data):

:MMEM:DATA "<file_name>",#ABC

"<file_name>" the I/Q file name and file path within the signal generator

indicates the start of the data block

A the number of decimal digits present in B

B a decimal number specifying the number of data bytes to follow in C

C the actual binary waveform data

The following example demonstrates this structure:

WFM1: the file path

my_file the I/Q file name as it will appear in the signal generator’s memory catalog

indicates the start of the data block

3 B has three decimal digits

240 240 bytes of data to follow in C

12%S!4&07#8g*Y9@7... the ASCII representation of some of the binary data downloaded to the
signal generator, however not all ASCII values are printable

Commands and File Paths for Downloading and Extracting Waveform Data

NOTE Filenames should not exceed 23 characters.

You can download or extract waveform data using the commands and file paths in the following
tables:

• Table 7, “Downloading Unencrypted Files for No Extraction (Extraction allowed on the Agilent
MXG Only),” on page 25

• Table 8, “Downloading Encrypted Files for No Extraction (Extraction allowed on the Agilent MXG
Only),” on page 25

• Table 9, “Downloading Unencrypted Files for Extraction,” on page 25
• Table 11, “Downloading Encrypted Files for Extraction,” on page 27
• Table 12, “Extracting Encrypted Waveform Data,” on page 27

file_name A C

MMEM:DATA “WFM1:my_file”,#3 240 12%S!4&07#8g*Y9@7...

B

24 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Table 7 Downloading Unencrypted Files for No Extraction (Extraction allowed on the Agilent MXG1 Only)

1.Refer to note on page 22.

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "WFM1:<file_name>",<blockdata>
MMEM:DATA "MKR1:<file_name>",<blockdata>
MMEM:DATA "HDR1:<file_name>",<blockdata>

SCPI/volatile memory with
full directory path

MMEM:DATA "user/bbg1/waveform/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/markers/<file_name>",<blockdata>
MMEM:DATA "user/bbg1/header/<file_name>",<blockdata>

SCPI/non–volatile memory MMEM:DATA "NVWFM:<file_name>",<blockdata>
MMEM:DATA "NVMKR:<file_name>",<blockdata>
MMEM:DATA "NVHDR:<file_name>",<blockdata>

SCPI/non–volatile memory
with full directory path

MMEM:DATA /user/waveform/<file_name>",<blockdata>
MMEM:DATA /user/markers/<file_name>",<blockdata>
MMEM:DATA /user/header/<file_name>",<blockdata>

Table 8 Downloading Encrypted Files for No Extraction (Extraction allowed on the Agilent MXG1 Only)

1.Refer to note on page 22.

Download Method
/Memory Type

Command Syntax Options

SCPI/volatile memory MMEM:DATA "user/bbg1/securewave/<file_name>",<blockdata>
MMEM:DATA "SWFM1:<file_name>",<blockdata>
MMEM:DATA "file_name@SWFM1",<blockdata>

SCPI/non–volatile memory MMEM:DATA "user/securewave/<file_name>",<blockdata>
MMEM:DATA "SNVWFM:<file_name>",<blockdata>
MMEM:DATA "file_name@SNVWFM",<blockdata>

Table 9 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options

SCPI/volatile
memory1

MEM:DATA:UNPRotected "/user/bbg1/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/bbg1/header/file_name",<blockdata>
MEM:DATA:UNPRotected "WFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "MKR1:file_name",<blockdata>
MEM:DATA:UNPRotected "HDR1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@WFM1",<blockdata>
MEM:DATA:UNPRotected "file_name@MKR1",<blockdata>
MEM:DATA:UNPRotected "file_name@HDR1",<blockdata>
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 25

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
SCPI/non–volatile
memory1

MEM:DATA:UNPRotected "/user/waveform/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/markers/file_name",<blockdata>
MEM:DATA:UNPRotected "/user/header/file_name",<blockdata>
MEM:DATA:UNPRotected "NVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "NVMKR:file_name",<blockdata>
MEM:DATA:UNPRotected "NVHDR:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@NVWFM",<blockdata>
MEM:DATA:UNPRotected "file_name@NVMKR",<blockdata>
MEM:DATA:UNPRotected "file_name@NVHDR",<blockdata>

FTP/volatile memory2 put <file_name> /user/bbg1/waveform/<file_name>
put <file_name> /user/bbg1/markers/<file_name>
put <file_name> /user/bbg1/header/<file_name>

FTP/non–volatile
memory2

put <file_name> /user/waveform/<file_name>
put <file_name> /user/markers/<file_name>
put <file_name> /user/header/<file_name>

1.On the N5162A/82A the :MEM:DATA:UNPRotected command is not required to be able to extract files (i.e. use :MEM:DATA). For
more information, refer to the SCPI Command Reference.

2. See “FTP Procedures” on page 28.

Table 10 Extracting Unencrypted I/Q Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/waveform/<file_name>"
MMEM:DATA? "WFM1:<file_name>"
MMEM:DATA? "<file_name>@WFM1"

SCPI/non–volatile
memory

MMEM:DATA? "/user/waveform/<file_name>"
MMEM:DATA? "NVWFM:<file_name>"
MMEM:DATA? "<file_name>@NVWFM"

FTP/volatile
memory1

get /user/bbg1/waveform/<file_name>
get /user/bbg1/markers/<file_name>
get /user/bbg1/header/<file_name>

FTP/non–volatile
memory1

get /user/waveform/<file_name>
get /user/markers/<file_name>
get /user/header/<file_name>

1. See “FTP Procedures” on page 28.

Table 9 Downloading Unencrypted Files for Extraction

Download Method/
Memory Type

Command Syntax Options
26 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
Table 11 Downloading Encrypted Files for Extraction

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile1
memory

MEM:DATA:UNPRotected "/user/bbg1/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SWFM1:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SWFM1",<blockdata>

SCPI/non–volatile
memory1

MEM:DATA:UNPRotected "/user/securewave/file_name",<blockdata>
MEM:DATA:UNPRotected "SNVWFM:file_name",<blockdata>
MEM:DATA:UNPRotected "file_name@SNVWFM",<blockdata>

FTP/volatile
memory2

put <file_name> /user/bbg1/securewave/<file_name>

FTP/non–volatile
memory2

put <file_name> /user/securewave/<file_name>

1.On the N5162A/82A the :MEM:DATA:UNPRotected command is not required to be able to extract files (i.e. use :MEM:DATA). For
more information, refer to the SCPI Command Reference.

2. See “FTP Procedures” on page 28.

Table 12 Extracting Encrypted Waveform Data

Download
Method/Memory
Type

Command Syntax Options

SCPI/volatile
memory

MMEM:DATA? "/user/bbg1/securewave/file_name"
MMEM:DATA? "SWFM1:file_name"
MMEM:DATA? "file_name@SWFM1"

SCPI/non–volatile
memory

MMEM:DATA? "/user/securewave/file_name"
MMEM:DATA? "SNVWFM:file_name"
MMEM:DATA? "file_name@SNVWFM"

FTP/volatile
memory1

get /user/bbg1/securewave/<file_name>

FTP/non–volatile

memory1

get /user/securewave/<file_name>

1. See “FTP Procedures” on page 28.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 27

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
FTP Procedures

CAUTION Avoid using the *OPC? or *WAI commands to verify that the FTP process has been
completed. These commands can potentially hang up due to the processing of other
SCPI parser operations. Refer to the SCPI Command Reference.

NOTE If you are remotely FTPing files and need to verify the completion of the FTP process, then
query the instrument by using SCPI commands such as: ':MEM:DATA:', ':MEM:CAT', '*STB?',
'FREQ?', '*IDN?', 'OUTP:STAT?'. Refer to the SCPI Command Reference.

There are three ways to FTP files:

• use Microsoft’s® Internet Explorer FTP feature
• use the PC’s or UNIX command window
• use the signal generator’s internal web server following the firmware requirements in the table

below

Using Microsoft’s Internet Explorer
1. Enter the signal generator’s hostname or IP address as part of the FTP URL.

ftp://<host name> or

ftp://<IP address>

2. Press Enter on the keyboard or Go from the Internet Explorer window.

The signal generator files appear in the Internet Explorer window.

3. Drag and drop files between the PC and the Internet Explorer window

Using the Command Window (PC or UNIX)

This procedure downloads to non–volatile memory. To download to volatile memory, change the file
path.

Signal Generator Firmware Version (Required
for Web Server Compatibility)

N516xA1, N518xA

1.The N5162A requires firmware version A.0140 or newer.

All

E44x8C ≥ C.03.10

E82x7D, E8663B All
28 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
CAUTION Get and Put commands write over existing files by the same name in destination
directories. Remember to change remote and local filenames to avoid the loss of data.

NOTE If a filename has a space, quotations are required around the filename.

Always transfer the waveform file before transferring the marker file.

For additional information on FTP commands, refer to the operating system’s Window Help
and Support Center.

1. From the PC command prompt or UNIX command line, change to the destination directory for the
file you intend to download.

2. From the PC command prompt or UNIX command line, type ftp <instrument name>. Where
instrument name is the signal generator’s hostname or IP address.

3. At the User: prompt in the ftp window, press Enter (no entry is required).

4. At the Password: prompt in the ftp window, press Enter (no entry is required).

5. At the ftp prompt, either put a file or get a file:

To put a file, type:

put <file_name> /user/waveform/<file_name1>

where <file_name> is the name of the file to download and <file_name1> is the name
designator for the signal generator’s /user/waveform/ directory.

If <filename1> is unspecified, ftp uses the specified <file_name> to name <file_name1>.

• If a marker file is associated with the data file, use the following command to download it to
the signal generator:
put <marker file_name> /user/markers/<file_name1>

where <marker file_name> is the name of the file to download and <file_name1> is the name
designator for the file in the signal generator’s /user/markers/ directory. Marker files and
the associated I/Q waveform data have the same name.

For more examples of put command usage refer to Table 13.

Table 13 Put Command Examples

Command
Results

Local Remote Notes

Incorrect put <filename.wfm>

put <filename.mkr>

/user/waveform/<filename1.wfm>

/user/marker/<filename1.mkr>

Produces two
separate and
incompatible files.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 29

Creating and Downloading Waveform Files
Commands for Downloading and Extracting Waveform Data
To get a file, type:

get /user/waveform/<file_name1> <file_name>

where <file_name1> is the file to download from the signal generator’s /user/waveform/
directory and <file_name> is the name designator for the local PC/UNIX.

• If a marker file is associated with the data file, use the following command to download it to
the local PC/UNIX directory:
get /user/markers/<file_name1> <marker file_name>

where <marker file_name1> is the name of the marker file to download from the signal
generator’s /user/markers/ directory and <marker file_name> is the name of the file to be
downloaded to the local PC/UNIX.

For more examples of get command usage refer to Table 14.

6. At the ftp prompt, type: bye

7. At the command prompt, type: exit

Using the Signal Generator’s Internal Web Server
1. Enter the signal generator’s hostname or IP address in the URL.

http://<host name> or <IP address>

2. Click the Signal Generator FTP Access button located on the left side of the window.

The signal generator files appear in the web browser’s window.

3. Drag and drop files between the PC and the browser’s window

For more information on the web server feature, see Programming Guide.

Correct put <filename.wfm>

put <filename.mkr>

/user/waveform/<filename1>

/user/marker/<filename1>

Creates a waveform
file and a compatible
marker file.

Table 14 Get Command Examples

Command
Results

Local Remote Notes

Incorrect get /user/waveform/file

get /user/marker/file

file1

file1

Results in file1 containing only the
marker data.

Correct get /user/waveform/file

get /user/marker/file

file1.wfm

file1.mkr

Creates a waveform file and a
compatible marker file. It is easier to
keep files associated by varying the
extenders.

Table 13 Put Command Examples

Command
Results

Local Remote Notes
30 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Creating Waveform Data
Creating Waveform Data
This section examines the C++ code algorithm for creating I/Q waveform data by breaking the
programming example into functional parts and explaining the code in generic terms. This is done to
help you understand the code algorithm in creating the I and Q data, so you can leverage the concept
into your programming environment. The SCPI Command Reference, contains information on how to
use SCPI commands to define the markers (polarity, routing, and other marker settings). If you do
not need this level of detail, you can find the complete programming examples in “Programming
Examples” on page 50.

You can use various programming environments to create ARB waveform data. Generally there are
two types:

• Simulation software— this includes MATLAB, Agilent Technologies EESof Advanced Design
System (ADS), Signal Processing WorkSystem (SPW), and so forth.

• Advanced programming languages—this includes, C++, VB, VEE, MS Visual Studio.Net, Labview,
and so forth.

No matter which programming environment you use to create the waveform data, make sure that the
data conforms to the data requirements shown on page 3. To learn about I/Q data for the signal
generator, see “Understanding Waveform Data” on page 3.

Code Algorithm

This section uses code from the C++ programming example “Importing, Byte Swapping, Interleaving,
and Downloading I and Q Data—Big and Little Endian Order” on page 66 to demonstrate how to
create and scale waveform data.

There are three steps in the process of creating an I/Q waveform:

1. Create the I and Q data.
2. Save the I and Q data to a text file for review.
3. Interleave the I and Q data to make an I/Q file, and swap the byte order for little–endian

platforms.

For information on downloading I/Q waveform data to a signal generator, refer to “Commands and
File Paths for Downloading and Extracting Waveform Data” on page 24 and “Downloading Waveform
Data” on page 37.

1. Create I and Q data.

The following lines of code create scaled I and Q data for a sine wave. The I data consists of one
period of a sine wave and the Q data consists of one period of a cosine wave.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 31

Creating and Downloading Waveform Files
Creating Waveform Data
Line Code—Create I and Q data

1
2
3
4
5
6
7
8
9

10
11

const int NUMSAMPLES=500;
main(int argc, char* argv[]);
{

short idata[NUMSAMPLES];
short qdata[NUMSAMPLES];
int numsamples = NUMSAMPLES;
for(int index=0; index<numsamples; index++);
{

idata[index]=23000 * sin((2*3.14*index)/numsamples);
qdata[index]=23000 * cos((2*3.14*index)/numsamples);

}

Line Code Description—Create I and Q data

1 Define the number of waveform points. Note that the maximum number of waveform points that you can set
is based on the amount of available memory in the signal generator. For more information on signal generator
memory, refer to “Waveform Memory” on page 16.

2 Define the main function in C++.

4 Create an array to hold the generated I values. The array length equals the number of the waveform points.
Note that we define the array as type short, which represents a 16–bit signed integer in most C++ compilers.

5 Create an array to hold the generated Q values (signed 16–bit integers).

6 Define and set a temporary variable, which is used to calculate the I and Q values.
32 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Creating Waveform Data
7–11 Create a loop to do the following:

• Generate and scale the I data (DAC values). This example uses a simple sine equation, where 2*3.14
equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 I data points over one period of the
sine waveform.

— Set the scale of the DAC values in the range of −32768 to 32767, where the values −32768 and 32767
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,
resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 7.

NOTE The signal generator comes from the factory with I/Q scaling set to 70%. If you reduce the DAC
input values, ensure that you set the signal generator scaling (:RADio:ARB:RSCaling) to an
appropriate setting that accounts for the reduced values.

• Generate and scale the Q data (DAC value). This example uses a simple cosine equation, where 2*3.14
equals one waveform cycle. Change the equation to fit your application.

— The array pointer, index, increments from 0–499, creating 500 Q data points over one period of the
cosine waveform.

— Set the scale of the DAC values in the range of −32767 to 32768, where the values −32767 and 32768
equal full scale negative and positive respectively. This example uses 23000 as the multiplier,
resulting in approximately 70% scaling. For more information on scaling, see “Scaling DAC Values” on
page 7.

Line Code Description—Create I and Q data
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 33

Creating and Downloading Waveform Files
Creating Waveform Data
2. Save the I/Q data to a text file to review.

The following lines of code export the I and Q data to a text file for validation. After exporting the
data, open the file using Microsoft Excel or a similar spreadsheet program, and verify that the I and
Q data are correct.

3. Interleave the I and Q data, and byte swap if using little endian order.

This step has two sets of code:

• Interleaving and byte swapping I and Q data for little endian order
• Interleaving I and Q data for big endian order

For more information on byte order, see “Little Endian and Big Endian (Byte Order)” on page 4.

Line Code Description—Saving the I/Q Data to a Text File

12
13
14
15
16
17
18
19

char *ofile = "c:\\temp\\iq.txt";
FILE *outfile = fopen(ofile, "w");
if (outfile==NULL) perror ("Error opening file to write");
for(index=0; index<numsamples; index++)
{

fprintf(outfile, "%d, %d\n", idata[index], qdata[index]);
}
fclose(outfile);

Line Code Description—Saving the I/Q Data to a Text File

12 Set the absolute path of a text file to a character variable. In this example, iq.txt is the file name and *ofile
is the variable name.

For the file path, some operating systems may not use the drive prefix (‘c:’ in this example), or may require
only a single forward slash (/), or both ("/temp/iq.txt")

13 Open the text file in write format.

14 If the text file does not open, print an error message.

15–18 Create a loop that prints the array of generated I and Q data samples to the text file.

19 Close the text file.
34 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Creating Waveform Data
Line Code—Interleaving and Byte Swapping for Little Endian Order

20
21
22
23
24
25
26
27
28
29
30

char iqbuffer[NUMSAMPLES*4];
for(index=0; index<numsamples; index++)
{

short ivalue = idata[index];
short qvalue = qdata[index];
iqbuffer[index*4] = (ivalue >> 8) & 0xFF;
iqbuffer[index*4+1] = ivalue & 0xFF;
iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF;
iqbuffer[index*4+3] = qvalue & 0xFF;

}
return 0;

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

20 Define a character array to store the interleaved I and Q data. The character array makes byte swapping
easier, since each array location accepts only 8 bits (1 byte). The array size increases by four times to
accommodate two bytes of I data and two bytes of Q data.

21–29 Create a loop to do the following:

• Save the current I data array value to a variable.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16–bit integer.

• Save the current Q data array value to a variable.
• Swap the low bytes (bits 0–7) of the data with the high bytes of the data (done for both
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 35

Creating and Downloading Waveform Files
Creating Waveform Data
21–29 the I and Q data), and interleave the I and Q data.

— shift the data pointer right 8 bits to the beginning of the high byte (ivalue >> 8)

— AND (boolean) the high I byte with 0xFF to make the high I byte the value to store in the IQ
array—(ivalue >> 8) & 0xFF

— AND (boolean) the low I byte with 0xFF (ivalue & 0xFF) to make the low I byte the value to store
in the I/Q array location just after the high byte [index * 4 + 1]

— Swap the Q byte order within the same loop. Notice that the I and Q data interleave with each loop
cycle. This is due to the I/Q array shifting by one location for each I and Q operation [index * 4 +
n].

Line Code Description—Interleaving and Byte Swapping for Little Endian Order

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data

Bit Position

Little Endian Order

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex values = E9 B7
Data pointer Data pointer shifted 8 bits

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Hex value =B7

1 1 1 1 1 1 1 1 Hex value =FF
1 0 1 1 0 1 1 1 Hex value =B7

1 0 1 1 0 1 1 1
15 14 13 12 11 10 9 8

Data
Bit Position

I Data in I/Q Array after Byte Swap (Big Endian Order)

1 1 1 0 1 0 0 1
7 6 5 4 3 2 1 0

Hex value = B7 E9

1 0 1 1 0 1 1 1
15...................... 8

Data

Bit Position
Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1
7.................... 0

1 1 1 0 0 1 0 1
15...................... 8

0 1 1 0 1 0 1 1
7.................... 0

I Data Q Data
36 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading Waveform Data
To download the data created in the above example, see “Using Advanced Programming Languages”
on page 40.

Downloading Waveform Data
This section examines methods of downloading I/Q waveform data created in MATLAB (a simulation
software) and C++ (an advanced programming language). For more information on simulation and
advanced programming environments, see “Creating Waveform Data” on page 31.

To download data from simulation software environments, it is typically easier to use one of the free
download utilities (described on page 46), because simulation software usually saves the data to a
file. In MATLAB however, you can either save data to a .mat file or create a complex array. To
facilitate downloading a MATLAB complex data array, Agilent created the Agilent Waveform
Download Assistant (one of the free download utilities), which downloads the complex data array
from within the MATLAB environment. This section shows how to use the Waveform Download
Assistant.

Line Code—Interleaving I and Q data for Big Endian Order

20
21
22
23
24
25
26

short iqbuffer[NUMSAMPLES*2];
for(index=0; index<numsamples; index++)
{
iqbuffer[index*2] = idata[index];
iqbuffer[index*2+1] = qdata[index];
}
return 0;

Line Code Description—Interleaving I and Q data for Big Endian Order

20 Define a 16–bit integer (short) array to store the interleaved I and Q data. The array size increases by two
times to accommodate two bytes of I data and two bytes of Q data.

NOTE In rare instances, a compiler may define short as larger than 16 bits. If this condition exists,
replace short with the appropriate object or label that defines a 16–bit integer.

21–25 Create a loop to do the following:

• Store the I data values to the I/Q array location [index*2].
• Store the Q data values to the I/Q array location [index*2+1].

1 0 1 1 0 1 1 1
15...................... 8

Data

Bit Position
Interleaved I/Q Array in Big Endian Order

1 1 1 0 1 0 0 1
7.................... 0

1 1 1 0 0 1 0 1
15...................... 8

0 1 1 0 1 0 1 1
7.................... 0

I Data Q Data
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 37

Creating and Downloading Waveform Files
Downloading Waveform Data
For advanced programming languages, this section closely examines the code algorithm for
downloading I/Q waveform data by breaking the programming examples into functional parts and
explaining the code in generic terms. This is done to help you understand the code algorithm in
downloading the interleaved I/Q data, so you can leverage the concept into your programming
environment. While not discussed in this section, you may also save the data to a binary file and use
one of the download utilities to download the waveform data (see “Using the Download Utilities” on
page 46).

 If you do not need the level of detail this section provides, you can find complete programming
examples in “Programming Examples” on page 50. Prior to downloading the I/Q data, ensure that it
conforms to the data requirements shown on page 3. To learn about I/Q data for the signal generator,
see “Understanding Waveform Data” on page 3. For creating waveform data, see “Creating Waveform
Data” on page 31.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFM1), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

Using Simulation Software

This procedure uses a complex data array created in MATLAB and uses the Agilent Waveform
Download Assistant to download the data. To obtain the Agilent Waveform Download Assistant, see
“Using the Download Utilities” on page 46.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator, sends the IEEE SCPI
command *idn?, and if the connection fails, displays an error message.

Line Code—Open a Connection Session

1

2
3
4
5

io = agt_newconnection('tcpip','IP address');
%io = agt_newconnection('gpib',<primary address>,<secondary address>);
[status,status_description,query_result] = agt_query(io,'*idn?');
if status == -1
display ‘fail to connect to the signal generator’;
end;
38 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading Waveform Data
2. Download the I/Q data

The following code downloads the generated waveform data to the signal generator, and if the
download fails, displays a message.

Line Code Description—Open a Connection Session with the Signal Generator

1 Sets up a structure (indicated above by io) used by subsequent function calls to establish a LAN connection to
the signal generator.

• agt_newconnection() is the function of Agilent Waveform Download Assistant used in MATLAB to build a
connection to the signal generator.

• If you are using GPIB to connect to the signal generator, provide the board, primary address, and
secondary address: io = agt_newconnection('gpib',0,19);
Change the GPIB address based on your instrument setting.

2 Send a query to the signal generator to verify the connection.

• agt_query() is an Agilent Waveform Download Assistant function that sends a query to the signal
generator.

• If signal generator receives the query *idn?, status returns zero and query_result returns the signal
generator’s model number, serial number, and firmware version.

3–5 If the query fails, display a message.

Line Code—Download the I/Q data

6

7
8
9

[status, status_description] = agt_waveformload(io, IQwave,
'waveformfile1', 2000, 'no_play','norm_scale');
if status == -1
display ‘fail to download to the signal generator’;
end;
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 39

Creating and Downloading Waveform Files
Downloading Waveform Data
Using Advanced Programming Languages

This procedure uses code from the C++ programming example “Importing, Byte Swapping,
Interleaving, and Downloading I and Q Data—Big and Little Endian Order” on page 66.

For information on creating I/Q waveform data, refer to “Creating Waveform Data” on page 31.

There are two steps in the process of downloading an I/Q waveform:

1. Open a connection session.
2. Download the I/Q data.

1. Open a connection session with the signal generator.

The following code establishes a LAN connection with the signal generator or prints an error message
if the session is not opened successfully.

Line Code Description—Download the I/Q data

6 Download the I/Q waveform data to the signal generator by using the function call (agt_waveformload) from
the Agilent Waveform Download Assistant. Some of the arguments are optional as indicated below, but if one
is used, you must use all arguments previous to the one you require.

Notice that with this function, you can perform the following actions:

• download complex I/Q data
• name the file (optional argument)

• set the sample rate (optional argument)
If you do not set a value, the signal generator uses its preset value of 125 MHz (N5162A/82A) or 100 MHz
(E4438C/E8267D), or if a waveform was previously play, the value from that waveform.

• start or not start waveform playback after downloading the data (optional argument)
Use either the argument play or the argument no_play.

• whether to normalize and scale the I/Q data (optional argument)
If you normalize and scale the data within the body of the code, then use no_normscale, but if you need
to normalize and scale the data, use norm_scale. This normalizes the waveform data to the DAC values
and then scales the data to 70% of the DAC values.

• download marker data (optional argument)
If there is no marker data, the signal generator creates a default marker file, all marker set to zero.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 43.

7–9 If the download fails, display an error message.

Line Code Description—Open a Connection Session

1

2
3
4
5
6
7

char* instOpenString ="lan[hostname or IP address]";
//char* instOpenString ="gpib<primary addr>,<secondary addr>";
INST id=iopen(instOpenString);
if (!id)
{

fprintf(stderr, "iopen failed (%s)\n", instOpenString);
return -1;

}

40 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading Waveform Data
2. Download the I/Q data.

The following code sends the SCPI command and downloads the generated waveform data to the
signal generator.

Line Code Description—Open a Connection Session

1 Assign the signal generator’s LAN hostname, IP address, or GPIB address to a character string.

• This example uses the Agilent IO library’s iopen() SICL function to establish a LAN connection with the
signal generator. The input argument, lan[hostname or IP address] contains the device, interface, or
commander address. Change it to your signal generator host name or just set it to the IP address used by
your signal generator. For example: “lan[999.137.240.9]”

• If you are using GPIB to connect to the signal generator, use the commented line in place of the first line.
Insert the GPIB address based on your instrument setting, for example “gpib0,19”.

• For the detailed information about the parameters of the SICL function iopen(), refer to the online
“Agilent SICL User’s Guide for Windows.”

2 Open a connection session with the signal generator to download the generated I/Q data.

 The SICL function iopen() is from the Agilent IO library and creates a session that returns an identifier to
id.

• If iopen() succeeds in establishing a connection, the function returns a valid session id. The valid session
id is not viewable, and can only be used by other SICL functions.

• If iopen() generates an error before making the connection, the session identifier is always set to zero.
This occurs if the connection fails.

• To use this function in C++, you must include the standard header
#include <sicl.h> before the main() function.

3–7 If id = 0, the program prints out the error message and exits the program.

Line CodeDescription—Download the I/Q Data

8
9

10
11
12
13

14
15
16

int bytesToSend;
bytesToSend = numsamples*4;
char s[20];
char cmd[200];
sprintf(s, "%d", bytesToSend);
sprintf(cmd, ":MEM:DATA \"WFM1:FILE1\", #%d%d", strlen(s), bytesToSend);
iwrite(id, cmd, strlen(cmd), 0, 0);
iwrite(id, iqbuffer, bytesToSend, 0, 0);
iwrite(id, "\n", 1, 1, 0);

Line Code Description—Download the I/Q data

8 Define an integer variable (bytesToSend) to store the number of bytes to send to the signal generator.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 41

Creating and Downloading Waveform Files
Downloading Waveform Data
9 Calculate the total number of bytes, and store the value in the integer variable defined in line 8.

In this code, numsamples contains the number of waveform points, not the number of bytes. Because it takes
four bytes of data, two I bytes and two Q bytes, to create one waveform point, we have to multiply
numsamples by four. This is shown in the following example:

numsamples = 500 waveform points
numsamples × 4 = 2000 (four bytes per point)

bytesToSend = 2000 (numsamples × 4)

For information on setting the number of waveform points, see “1. Create I and Q data.” on page 31.

10 Create a string large enough to hold the bytesToSend value as characters. In this code, string s is set to 20
bytes (20 characters—one character equals one byte)

11 Create a string and set its length (cmd[200]) to hold the SCPI command syntax and parameters. In this code,
we define the string length as 200 bytes (200 characters).

12 Store the value of bytesToSend in string s. For example, if bytesToSend = 2000; s = ”2000”

sprintf() is a standard function in C++, which writes string data to a string variable.

13 Store the SCPI command syntax and parameters in the string cmd. The SCPI command prepares the signal
generator to accept the data.

• strlen() is a standard function in C++, which returns length of a string.

• If bytesToSend = 2000, then s = “2000”, strlen(s) = 4, so
cmd = :MEM:DATA ”WFM1:FILE1\” #42000.

14 Send the SCPI command stored in the string cmd to the signal generator, which is represented by the session
id.

• iwrite() is a SICL function in Agilent IO library, which writes the data (block data) specified in the string
cmd to the signal generator (id).

• The third argument of iwrite(), strlen(cmd), informs the signal generator of the number of bytes in the
command string. The signal generator parses the string to determine the number of I/Q data bytes it
expects to receive.

• The fourth argument of iwrite(), 0, means there is no END of file indicator for the string. This lets the
session remain open, so the program can download the I/Q data.

Line Code Description—Download the I/Q data
42 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
Loading, Playing, and Verifying a Downloaded Waveform
The following procedures show how to perform the steps using SCPI commands. For front panel key
commands, refer to the User’s Guide or to the Key help in the signal generator.

Loading a File from Non–Volatile Memory

Select the downloaded I/Q file in non–volatile waveform memory (NVWFM) and load it into volatile
waveform memory (WFM1). The file comprises three items: I/Q data, marker file, and file header
information.

Send one of the following SCPI command to copy the I/Q file, marker file and file header
information:

:MEMory:COPY:NAME "<NVWFM:file_name>","<WFM1:file_name>"
:MEMory:COPY:NAME "<NVMKR:file_name>","<MKR1:file_name>"
:MEMory:COPY:NAME "<,"<HDR:file_name>"

15 Send the generated waveform data stored in the I/Q array (iqbuffer) to the signal generator.

• iwrite() sends the data specified in iqbuffer to the signal generator (session identifier specified in id).

• The third argument of iwrite(), bytesToSend, contains the length of the iqbuffer in bytes. In this example,
it is 2000.

• The fourth argument of iwrite(), 0, means there is no END of file indicator in the data.

In many programming languages, there are two methods to send SCPI commands and data:

— Method 1 where the program stops the data download when it encounters the first zero (END
indicator) in the data.

— Method 2 where the program sends a fixed number of bytes and ignores any zeros in the data. This
is the method used in our program.

For your programming language, you must find and use the equivalent of method two. Otherwise you may
only achieve a partial download of the I and Q data.

16 Send the terminating carriage (\n) as the last byte of the waveform data.

• iwrite() writes the data “\n” to the signal generator (session identifier specified in id).

• The third argument of iwrite(), 1, sends one byte to the signal generator.

• The fourth argument of iwrite(), 1, is the END of file indicator, which the program uses to terminate the
data download.

To verify the waveform data download, see “Loading, Playing, and Verifying a Downloaded Waveform” on
page 43.

Line Code Description—Download the I/Q data
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 43

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
NOTE When you copy a waveform file, marker file, or header file information from volatile or
non–volatile memory, the waveform and associated marker and header files are all copied.
Conversely, when you delete an I/Q file, the associated marker and header files are deleted.
It is not necessary to send separate commands to copy or delete the marker and header
files.

Playing the Waveform

NOTE If you would like to build and play a waveform sequence, refer to “Building and Playing
Waveform Sequences” on page 45.

Play the waveform and use it to modulate the RF carrier.

1. List the waveform files from the volatile memory waveform list:

Send the following SCPI command:

:MMEMory:CATalog? "WFM1:"

2. Select the waveform from the volatile memory waveform list:

Send the following SCPI command:

:SOURce:RADio:ARB:WAVeform "WFM1:<file_name>"

3. Play the waveform:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut:MODulation:STATe ON
:OUTPut:STATe ON
44 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Loading, Playing, and Verifying a Downloaded Waveform
Verifying the Waveform

Perform this procedure after completing the steps in the previous procedure, “Playing the Waveform”
on page 44.

1. Connect the signal generator to an oscilloscope as shown in the figure.

2. Set an active marker point on the first waveform point for marker one.

NOTE Select the same waveform selected in “Playing the Waveform” on page 44.

Send the following SCPI commands:

:SOURce:RADio:ARB:MARKer:CLEar:ALL "WFM1:<file_name>",1

:SOURce:RADio:ARB:MARKer:SET "WFM1:<file_name>",1,1,1,0.

3. Compare the oscilloscope display to the plot of the I and Q data from the text file you created
when you generated the data.

If the oscilloscope display, and the I and Q data plots differ, recheck your code. For detailed
information on programmatically creating and downloading waveform data, see “Creating
Waveform Data” on page 31 and “Downloading Waveform Data” on page 37. For information on
the waveform data requirements, see “Waveform Data Requirements” on page 3.

Building and Playing Waveform Sequences

The signal generator can be used to build waveform sequences. This section assumes you have
created the waveform segment file(s) and have the waveform segment file(s) in volatile memory. The
following SCPI commands can be used to generate and work with a waveform sequence. For more
information refer to the signal generator’s SCPI Command Reference and User’s Guide.

NOTE If you would like to verify the waveform sequence, refer to “Verifying the Waveform” on
page 45.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 45

Creating and Downloading Waveform Files
Using the Download Utilities
1. List the waveform files from the volatile memory waveform list:

Send the following SCPI command:

:MMEMory:CATalog? "WFM1:"

2. Select the waveform segment file(s) from the volatile memory waveform list:

Send the following SCPI command:

:SOURce:RADio:ARB:WAVeform "WFM1:<file_name>"

3. Save the waveform segment(s) (“<waveform1>”, “<waveform2>”, ...), to non–volatile memory as a
waveform sequence (“<file_name>”), define the number of repetitions (<reps>), each waveform
segment plays, and enable/disable markers (M1|M2|M3|M4|...), for each waveform segment:

Send the following SCPI command:

:SOURce:RADio:ARB:SEQuence
"<file_name>","<waveform1>",<reps>,M1|M2|M3|M4,{"<waveform2>",<reps>,ALL}

:SOURce:RADio:ARB:SEQuence? "<file_name>"

NOTE M1|M2|M3|M4 represent the number parameter of the marker selected (i.e. 1|2|3|4). Entering
M1|M2|M3|M4 causes the signal generator to display an error. For more information on this
SCPI command, refer to the signal generator’s SCPI Command Reference.

4. Play the waveform sequence:

Send the following SCPI commands:

:SOURce:RADio:ARB:STATe ON
:OUTPut:MODulation:STATe ON
:OUTPut:STATe ON

Using the Download Utilities
Agilent provides free download utilities to download waveform data into the signal generator. The
table in this section describes the capabilities of three such utilities.

For more information and to install the utilities, refer to the following URLs:

• Agilent Signal Studio Toolkit 2: http://www.agilent.com/find/signalstudio

This software provides a graphical interface for downloading files.

• Agilent IntuiLink for Agilent PSG/ESG/E8663B Signal Generators:
http://www.agilent.com/find/intuilink

This software places icons in the Microsoft Excel and Word toolbar. Use the icons to connect to
the signal generator and open a window for downloading files.
46 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
NOTE Agilent Intuilink is not available for the Agilent MXG.

• Agilent Waveform Download Assistant: http://www.agilent.com/find/downloadassistant

This software provides functions for the MATLAB environment to download waveform data.

Downloading E443xB Signal Generator Files
To download earlier E443xB model I and Q files, use the same SCPI commands as if downloading
files to an E443xB signal generator. The signal generator automatically converts the E443xB files to
the proper file format as described in “Waveform Structure” on page 11 and stores them in the signal
generator’s memory. This conversion process causes the signal generator to take more time to
download the earlier file format. To minimize the time to convert earlier E443xB files to the proper
file format, store E443xB file downloads to volatile memory, and then transfer them over to
non–volatile (NVWFM) memory.

NOTE You cannot extract waveform data downloaded as E443xB files.

Features Agilent Signal
Studio Toolkit 2

Agilent
IntuiLink1

1. Agilent Intuilink is not available for the Agilent MXG.

Agilent
Waveform
Download
Assistant

Downloads encrypted waveform files X

Downloads complex MATLAB waveform data X

Downloads MATLAB files (.mat) X

Downloads unencrypted interleaved 16–bit I/Q files 2

2. ASCII or binary format.

X X

Interleaves and downloads earlier 14–bit E443xB I and Q

files2

X X

Swaps bytes for little endian order X

Manually select big endian byte order for 14–bit and 16–bit I/Q
files

X

Downloads user–created marker files X X X

Performs scaling X X X

Starts waveform play back X X

Sends SCPI Commands and Queries X X

Builds a waveform sequence X X
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 47

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
E443xB Data Format

The following diagram describes the data format for the E443xB waveform files. This file structure
can be compared with the new style file format shown in “Waveform Structure” on page 11. If you
create new waveform files for the signal generator, use the format shown in “Waveform Data
Requirements” on page 3.

Storage Locations for E443xB ARB files

Place waveforms in either volatile memory or non–volatile memory. The signal generator supports the
E443xB directory structure for waveform file downloads (i.e. “ARBI:”, “ARBQ:”, “NVARBI:”, and
“NVARBQ:”, see also “SCPI Commands” on page 50).

Volatile Memory Storage Locations
• /user/arbi/
• /user/arbq/

Non–Volatile Memory Storage Locations
• /user/nvarbi/
• /user/nvarbq/

Loading files into the above directories (volatile or non–volatile memory) does not actually store them
in those directories. Instead, these directories function as “pipes” to the format translator. The signal
generator performs the following functions on the E443xB data:

• Converts the 14–bit I and Q data into 16–bit data (the format required by the signal generator).
Subtract 8192, left shifts the data, and appends two bits (zeros) before the least significant bit
(i.e. the offset binary values are converted to 2’s complement values by the signal generator).
48 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Downloading E443xB Signal Generator Files
• Creates a marker file and places the marker information, bits 14 and 15 of the E443xB I data,
into the marker file for markers one and two. Markers three and four, within the new marker file,
are set to zero (off).

• Interleaves the 16–bit I and Q data creating one I/Q file.

• Creates a file header with all parameters set to unspecified (factory default file header setting).

1100110110111001 0000100111011001

1001011011100100

E443xB 14–Bit Data

 I data Q data

Subtracts 8192, Left Shifts, and Adds Zeros—Removes Marker and Reserved Bits

16–bit I data 16–bit Q data

Marker bits Reserved bits

(16–Bit Data Format)

Bits addedBits added

11

Marker bits removed

100001110110010000

Reserved bits removed

14 data bits14 data bits

0011

Places the I Marker Bits into the Signal Generator Marker File

Marker 3 and 4 bits
Marker 1 and 2 bits from the E443xB I data
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 49

Creating and Downloading Waveform Files
Programming Examples
SCPI Commands

Use the following commands to download E443xB waveform files into the signal generator.

NOTE To avoid overwriting the current waveform in volatile memory, before downloading files into
volatile memory (WFM1), change the file name or turn off the ARB. For more information, on
manually turning off the ARB, refer to the User’s Guide.

To turn off the ARB remotely, send: :SOURce:RADio:ARB:STATe OFF.

The variables <I waveform block data> and <Q waveform block data> represents data in the
E443xB file format. The string variable <file_name> is the name of the I and Q data file. After
downloading the data, the signal generator associates a file header and marker file with the I/Q data
file.

Programming Examples

NOTE The programming examples contain instrument–specific information. However, users can still
use these programming examples by substituting in the instrument–specific information for
your signal generator. Model specific exceptions for programming use, will be noted at the
top of each programming section.

The programming examples use GPIB or LAN interfaces and are written in the following languages:

• C++ (page 51)
• MATLAB (page 72)
• Visual Basic (page 79)
• HP Basic (page 84)

See the signal generator’s Programming Guide for information on interfaces and IO libraries.

The example programs are also available on the signal generator Documentation CD–ROM, which
allows you to cut and paste the examples into an editor.

Extraction Method/
Memory Type

Command Syntax Options

SCPI/
volatile memory

:MMEM:DATA "ARBI:<file_name>", <I waveform block data>
:MMEM:DATA "ARBQ:<file_name>", <Q waveform data>

SCPI/
non–volatile memory

:MMEM:DATA "NVARBI:<file_name>", <I waveform block data>
:MMEM:DATA "NVARBQ:<file_name>", <Q waveform block data>
50 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
C++ Programming Examples

This section contains the following programming examples:

• “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 51
• “Creating and Storing I/Q Data—Little Endian Order” on page 55
• “Creating and Downloading I/Q Data—Big and Little Endian Order” on page 56
• “Importing and Downloading I/Q Data—Big Endian Order” on page 60
• “Importing and Downloading Using VISA—Big Endian Order” on page 62
• “Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian

Order” on page 66

Creating and Storing Offset I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “offset_iq_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) follows the same coding
algorithm as the MATLAB programming example “Creating and Storing I/Q Data” on page 72 and
performs the following functions:

• error checking
• data creation
• data normalization
• data scaling
• I/Q signal offset from the carrier (single sideband suppressed carrier signal)
• byte swapping and interleaving for little endian order data
• I and Q interleaving for big endian order data
• binary data file storing to a PC or workstation
• reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

// This C++ example shows how to

// 1.) Create a simple IQ waveform

// 2.) Save the waveform into the ESG/PSG Internal Arb format

// This format is for the E4438C, E8267C, E8267D

// This format will not work with the ESG E443xB or the Agilent MXG N518xA

// 3.) Load the internal Arb format file into an array

#include <stdio.h>

#include <string.h>

#include <math.h>

const int POINTS = 1000; // Size of waveform

const char *computer = “PCWIN”;

int main(int argc, char* argv[])

{

Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 51

Creating and Downloading Waveform Files
Programming Examples
// 1.) Create Simple IQ Signal ***

// This signal is a single tone on the upper

// side of the carrier and is usually refered to as

// a Single Side Band Suppressed Carrier (SSBSC) signal.

// It is nothing more than a cosine wavefomm in I

// and a sine waveform in Q.

int points = POINTS; // Number of points in the waveform

int cycles = 101; // Determines the frequency offset from the carrier

double Iwave[POINTS]; // I waveform

double Qwave[POINTS]; // Q waveform

short int waveform[2*POINTS]; // Holds interleaved I/Q data

double maxAmp = 0; // Used to Normalize waveform data

double minAmp = 0; // Used to Normalize waveform data

double scale = 1;

char buf; // Used for byte swapping

char *pChar; // Used for byte swapping

bool PC = true; // Set flag as appropriate

double phaseInc = 2.0 * 3.141592654 * cycles / points;

double phase = 0;

int i = 0;

for(i=0; i<points; i++)

{

phase = i * phaseInc;

Iwave[i] = cos(phase);

Qwave[i] = sin(phase);

}

// 2.) Save waveform in internal format *********************************

// Convert the I and Q data into the internal arb format

// The internal arb format is a single waveform containing interleaved IQ

// data. The I/Q data is signed short integers (16 bits).

// The data has values scaled between +-32767 where

// DAC Value Description

// 32767 Maximum positive value of the DAC

// 0 Zero out of the DAC

// -32767 Maximum negative value of the DAC

// The internal arb expects the data bytes to be in Big Endian format.

// This is opposite of how short integers are saved on a PC (Little Endian).

// For this reason the data bytes are swapped before being saved.
52 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
// Find the Maximum amplitude in I and Q to normalize the data between +-1

maxAmp = Iwave[0];

minAmp = Iwave[0];

for(i=0; i<points; i++)

{

 if(maxAmp < Iwave[i])

maxAmp = Iwave[i];

 else if(minAmp > Iwave[i])

minAmp = Iwave[i];

 if(maxAmp < Qwave[i])

maxAmp = Qwave[i];

 else if(minAmp > Qwave[i])

minAmp = Qwave[i];

}

maxAmp = fabs(maxAmp);

minAmp = fabs(minAmp);

if(minAmp > maxAmp)

maxAmp = minAmp;

// Convert to short integers and interleave I/Q data

scale = 32767 / maxAmp; // Watch out for divide by zero.

for(i=0; i<points; i++)

{

waveform[2*i] = (short)floor(Iwave[i]*scale + 0.5);

waveform[2*i+1] = (short)floor(Qwave[i]*scale + 0.5);

}

// If on a PC swap the bytes to Big Endian

if(strcmp(computer,”PCWIN”) == 0)

//if(PC)

{

pChar = (char *)&waveform[0]; // Character pointer to short int data

for(i=0; i<2*points; i++)

{

buf = *pChar;

*pChar = *(pChar+1);

*(pChar+1) = buf;

pChar+= 2;

}

}

// Save the data to a file
// Use FTP or one of the download assistants to download the file to the
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 53

Creating and Downloading Waveform Files
Programming Examples
// signal generator

char *filename = “C:\\Temp\\PSGTestFile”;

FILE *stream = NULL;

stream = fopen(filename, “w+b”);// Open the file

if (stream==NULL) perror (“Cannot Open File”);

int numwritten = fwrite((void *)waveform, sizeof(short), points*2, stream);

fclose(stream);// Close the file

// 3.) Load the internal Arb format file *********************************

// This process is just the reverse of saving the waveform

// Read in waveform as unsigned short integers.

// Swap the bytes as necessary

// Normalize between +-1

// De-interleave the I/Q Data

// Open the file and load the internal format data

stream = fopen(filename, “r+b”);// Open the file

if (stream==NULL) perror (“Cannot Open File”);

int numread = fread((void *)waveform, sizeof(short), points*2, stream);

fclose(stream);// Close the file

// If on a PC swap the bytes back to Little Endian

if(strcmp(computer,”PCWIN”) == 0)

{

pChar = (char *)&waveform[0]; // Character pointer to short int data

for(i=0; i<2*points; i++)

{

buf = *pChar;

*pChar = *(pChar+1);

*(pChar+1) = buf;

pChar+= 2;

}
}

// Normalize De-Interleave the IQ data

double IwaveIn[POINTS];

double QwaveIn[POINTS];

for(i=0; i<points; i++)

{

IwaveIn[i] = waveform[2*i] / 32767.0;

QwaveIn[i] = waveform[2*i+1] / 32767.0;

}

return 0;

}

54 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
Creating and Storing I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “CreateStore_Data_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrior 3.0) performs the following
functions:

• error checking
• data creation
• byte swapping and interleaving for little endian order data
• binary data file storing to a PC or workstation

After creating the binary file, you can use FTP, one of the download utilities, or one of the C++
download programming examples to download the file to the signal generator.

#include <iostream>

#include <fstream>

#include <math.h>

#include <stdlib.h>

using namespace std;

int main (void)

{

ofstream out_stream; // write the I/Q data to a file

const unsigned int SAMPLES =200; // number of sample pairs in the waveform

 const short AMPLITUDE = 32000; // amplitude between 0 and full scale dac value

 const double two_pi = 6.2831853;

 //allocate buffer for waveform

short* iqData = new short[2*SAMPLES];// need two bytes for each integer

if (!iqData)

{

cout << "Could not allocate data buffer." << endl;

return 1;

}

 out_stream.open("IQ_data");// create a data file

if (out_stream.fail())

{

cout << "Input file opening failed" << endl;

exit(1);

}

//generate the sample data for I and Q. The I channel will have a sine

 //wave and the Q channel will a cosine wave.

Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 55

Creating and Downloading Waveform Files
Programming Examples
 for (int i=0; i<SAMPLES; ++i)

 {

 iqData[2*i] = AMPLITUDE * sin(two_pi*i/(float)SAMPLES);

 iqData[2*i+1] = AMPLITUDE * cos(two_pi*i/(float)SAMPLES);

 }

// make sure bytes are in the order MSB(most significant byte) first. (PC only).

char* cptr = (char*)iqData;// cast the integer values to characters

for (int i=0; i<(4*SAMPLES); i+=2)// 4*SAMPLES

{

char temp = cptr[i];// swap LSB and MSB bytes

cptr[i]=cptr[i+1];

cptr[i+1]=temp;

}

 // now write the buffer to a file

out_stream.write((char*)iqData, 4*SAMPLES);

return 0;

}

Creating and Downloading I/Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “CreateDwnLd_Data_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

• error checking
• data creation
• data scaling
• text file creation for viewing and debugging data
• byte swapping and interleaving for little endian order data
• interleaving for big endian order data
• data saving to an array (data block)
• data block download to the signal generator

// This C++ program is an example of creating and scaling

// I and Q data, and then downloading the data into the

// signal generator as an interleaved I/Q file.

// This example uses a sine and cosine wave as the I/Q

// data.

//

// Include the standard headers for SICL programming

#include <sicl.h>
56 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include <math.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”lan[galqaDhcp1]”;

//char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and the signal generator.

const int NUMSAMPLES=500;

int main(int argc, char* argv[])

{

 // Create a text file to view the waveform

 // prior to downloading it to the signal generator.

 // This verifies that the data looks correct.

 char *ofile = “c:\\temp\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[NUMSAMPLES];

 int qdata[NUMSAMPLES];

 // save the number of sampes into numsamples

 int numsamples = NUMSAMPLES;

 // Fill the I and Q buffers with the sample data

 for(int index=0; index<numsamples; index++)

 {

 // Create the I and Q data for the number of waveform

 // points and Scale the data (20000 * ...) as a precentage

 // of the DAC full scale (-32768 to 32767). This example

 // scales to approximately 70% of full scale.

 idata[index]=23000 * sin((4*3.14*index)/numsamples);

 qdata[index]=23000 * cos((4*3.14*index)/numsamples);

 }

 // Print the I and Q values to a text file. View the data

 // to see if its correct and if needed, plot the data in a
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 57

Creating and Downloading Waveform Files
Programming Examples
 // spreadsheet to help spot any problems.

 FILE *outfile = fopen(ofile, “w”);

 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // Little endian order data, use the character array and for loop.

// If big endian order, comment out this character array and for loop,

// and use the next loop (Big Endian order data).

 // We need a buffer to interleave the I and Q data.

// 4 bytes to account for 2 I bytes and 2 Q bytes.

char iqbuffer[NUMSAMPLES*4];

// Interleave I and Q, and swap bytes from little

 // endian order to big endian order.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 iqbuffer[index*4] = (ivalue >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = ivalue & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qvalue >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qvalue & 0xFF; // low byte of q

 }

 // Big Endian order data, uncomment the following lines of code.

 // Interleave the I and Q data.

 // short iqbuffer[NUMSAMPLES*2]; // Big endian order, uncomment this line

 // for(index=0; index<numsamples; index++) // Big endian order, uncomment this line

 // { // Big endian order, uncomment this line

 // iqbuffer[index*2] = idata[index]; // Big endian order, uncomment this line

 // iqbuffer[index*2+1] = qdata[index]; // Big endian order, uncomment this line

 // } // Big endian order, uncomment this line

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)
58 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables to hold portions of the SCPI command

 int bytesToSend;

 char s[20];

 char cmd[200];

 bytesToSend = numsamples*4; // calculate the number of bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that number of bytes

 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,#

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I and Q data.

 sprintf(cmd, “:MEM:DATA \”WFM1:FILE1\”, #%d%d”, strlen(s), bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In many

 // programming languages, there are two methods to send SCPI commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.

 // You must find and use the correct command for Method 2.

 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

printf(“Loaded file using the E4438C, E8267C and E8267D format\n”);

return 0;

}

Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 59

Creating and Downloading Waveform Files
Programming Examples
Importing and Downloading I/Q Data—Big Endian Order

On the documentation CD, this programming example’s name is “impDwnLd_c++.txt.”

This C++ programming example (compiled using Metrowerks CodeWarrier 3.0) assumes that the data
is in big endian order and performs the following functions:

• error checking
• binary file importing from the PC or workstation.
• binary file download to the signal generator.

// Description: Send a file in blocks of data to a signal generator

//

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// ATTENTION:

// - Configure these three lines appropriately for your instrument

// and use before compiling and running
//

char* instOpenString = "gpib7,19"; //for LAN replace with “lan[<hostname or IP address>]”

const char* localSrcFile = "D:\\home\\TEST_WAVE"; //enter file location on PC/workstation

const char* instDestFile = "/USER/BBG1/WAVEFORM/TEST_WAVE"; //for non-volatile memory
 //remove BBG1 from file path

// Size of the copy buffer

const int BUFFER_SIZE = 100*1024;

int

main()

{

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, "iopen failed (%s)\n", instOpenString);

 return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");

 if (!file)

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);

 return 0;

 }
60 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot seek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot seek to the start of file.\n");

 return 0;

 }

 char* buf = new char[BUFFER_SIZE];

 if (buf && lenToSend)

 {

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 char s2[256];

 sprintf(s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);

 iwrite(id, s2, strlen(s2), 0, 0);

 // Send file in BUFFER_SIZE chunks

 long numRead;

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 iwrite(id, buf, numRead, 0, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOM

 iwrite(id, "\n", 1, 1, 0);

 delete [] buf;

 }

 else

 {
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 61

Creating and Downloading Waveform Files
Programming Examples
 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);

 iclose(id);

 return 0;

}

Importing and Downloading Using VISA—Big Endian Order

On the documentation CD, this programming example’s name is “DownLoad_Visa_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) assumes that the data is in
big endian order and performs the following functions:

• error checking
• binary file importing from the PC or workstation
• binary file download to the signal generator’s non–volatile memory

To load the waveform data to volatile (WFM1) memory, change the instDestfile declaration to:
“USER/BBG1/WAVEFORM/”.

//***

// PROGRAM NAME:Download_Visa_c++.cpp

//

// PROGRAM DESCRIPTION:Sample test program to download ARB waveform data. Send a

// file in chunks of ascii data to the signal generator.

//

// NOTE: You must have the Agilent IO Libraries installed to run this program.

//

// This example uses the LAN/TCPIP to download a file to the signal generator's

// non-volatile memory. The program allocates a memory buffer on the PC or

// workstation of 102400 bytes (100*1024 bytes). The actual size of the buffer is

// limited by the memory on your PC or workstation, so the buffer size can be

// increased or decreased to meet your system limitations.

//

// While this program uses the LAN/TCPIP to download a waveform file into

// non-volatile memory, it can be modified to store files in volatile memory

// WFM1 using GPIB by setting the instrOpenString = "TCPIP0::xxx.xxx.xxx.xxx::INSTR"

// declaration with "GPIB::19::INSTR"

//

// The program also includes some error checking to alert you when problems arise

// while trying to download files. This includes checking to see if the file exists.

//**

// IMPORTANT: Replace the xxx.xxx.xxx.xxx IP address in the instOpenString declaration

// in the code below with the IP address of your signal generator. (or you can use the

// instrument's hostname). Replace the localSrcFile and instDestFile directory paths
62 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
// as needed.

//**

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#include "visa.h"

//

// IMPORTANT:

// Configure the following three lines correctly before compiling and running

char* instOpenString ="TCPIP0::xxx.xxx.xxx.xxx::INSTR"; // your instrument's IP address

const char* localSrcFile = "\\Files\\IQ_DataC";

const char* instDestFile = "/USER/WAVEFORM/IQ_DataC";

const int BUFFER_SIZE = 100*1024;// Size of the copy buffer

int main(int argc, char* argv[])

{

 ViSession defaultRM, vi;

 ViStatus status = 0;

 status = viOpenDefaultRM(&defaultRM);// Open the default resource manager

 // TO DO: Error handling here

 status = viOpen(defaultRM, instOpenString, VI_NULL, VI_NULL, &vi);

 if (status)// If any errors then display the error and exit the program

 {

 fprintf(stderr, "viOpen failed (%s)\n", instOpenString);

return -1;

 }

 FILE* file = fopen(localSrcFile, "rb");// Open local source file for binary reading

 if (!file) // If any errors display the error and exit the program

 {

 fprintf(stderr, "Could not open file: %s\n", localSrcFile);
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 63

Creating and Downloading Waveform Files
Programming Examples
return 0;

 }

 if(fseek(file, 0, SEEK_END) < 0)

 {

 fprintf(stderr,"Cannot lseek to the end of file.\n");

 return 0;

 }

 long lenToSend = ftell(file);// Number of bytes in the file

 printf("File size = %d\n", lenToSend);

 if (fseek(file, 0, SEEK_SET) < 0)

 {

 fprintf(stderr,"Cannot lseek to the start of file.\n");

 return 0;

 }

 unsigned char* buf = new unsigned char[BUFFER_SIZE]; // Allocate char buffer memory

 if (buf && lenToSend)

 {

 // Do not send the EOI (end of instruction) terminator on any write except the

 // last one

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 0);

 // Prepare and send the SCPI command header

 char s[20];

 sprintf(s, "%d", lenToSend);

 int lenLen = strlen(s);

 unsigned char s2[256];

// Write the command mmem:data and the header.The number lenLen represents the

// number of bytes and the actual number of bytes is the variable lenToSend

 sprintf((char*)s2, "mmem:data \"%s\", #%d%d", instDestFile, lenLen, lenToSend);

// Send the command and header to the signal generator
64 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
 viWrite(vi, s2, strlen((char*)s2), 0);

 long numRead;

// Send file in BUFFER_SIZE chunks to the signal generator

 do

 {

 numRead = fread(buf, sizeof(char), BUFFER_SIZE, file);

 viWrite(vi, buf, numRead, 0);

 } while (numRead == BUFFER_SIZE);

 // Send the terminating newline and EOI

 viSetAttribute(vi, VI_ATTR_SEND_END_EN, 1);

 char* newLine = "\n";

 viWrite(vi, (unsigned char*)newLine, 1, 0);

 delete [] buf;

 }

 else

 {

 fprintf(stderr, "Could not allocate memory for copy buffer\n");

 }

 fclose(file);

 viClose(vi);

 viClose(defaultRM);

 return 0;

}

Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 65

Creating and Downloading Waveform Files
Programming Examples
Importing, Byte Swapping, Interleaving, and Downloading I and Q Data—Big and Little Endian Order

On the documentation CD, this programming example’s name is “impDwnLd2_c++.txt.”

This C++ programming example (compiled using Microsoft Visual C++ 6.0) performs the following
functions:

• error checking
• binary file importing (earlier E443xB or current model signal generators)
• byte swapping and interleaving for little endian order data
• data interleaving for big endian order data
• data scaling
• binary file download for earlier E443xB data or current signal generator formatted data

// This C++ program is an example of loading I and Q

// data into an E443xB, E4438C, E8267C, or E8267D signal

// generator.

//

// It reads the I and Q data from a binary data file

// and then writes the data to the instrument.

// Include the standard headers for SICL programming

#include <sicl.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// Choose a GPIB, LAN, or RS-232 connection

char* instOpenString =”gpib0,19”;

// Pick some maximum number of samples, based on the

// amount of memory in your computer and your waveforms.

const int MAXSAMPLES=50000;

int main(int argc, char* argv[])

{

 // These are the I and Q input files.

 // Some compilers will allow ‘/’ in the directory

 // names. Older compilers might need ‘\\’ in the

 // directory names. It depends on your operating system

 // and compiler.

 char *ifile = “c:\\SignalGenerator\\data\\BurstA1I.bin”;

 char *qfile = “c:\\SignalGenerator\\data\\BurstA1Q.bin”;
66 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
 // This is a text file to which we will write the

 // I and Q data just for debugging purposes. It is

 // a good programming practice to check your data

 // in this way before attempting to write it to

 // the instrument.

 char *ofile = “c:\\SignalGenerator\\data\\iq.txt”;

 // Create arrays to hold the I and Q data

 int idata[MAXSAMPLES];

 int qdata[MAXSAMPLES];

 // Often we must modify, scale, or offset the data

 // before loading it into the instrument. These

 // buffers are used for that purpose. Since each

 // sample is 16 bits, and a character only holds

 // 8 bits, we must make these arrays twice as long

 // as the I and Q data arrays.

 char ibuffer[MAXSAMPLES*2];

 char qbuffer[MAXSAMPLES*2];

 // For the E4438C or E8267C/67D, we might also need to interleave

 // the I and Q data. This buffer is used for that

 // purpose. In this case, this buffer must hold

 // both I and Q data so it needs to be four times

 // as big as the data arrays.

 char iqbuffer[MAXSAMPLES*4];

 // Declare variables which will be used later

 bool done;

 FILE *infile;

 int index, numsamples, i1, i2, ivalue;

 // In this example, we’ll assume the data files have

 // the I and Q data in binary form as unsigned 16 bit integers.

 // This next block reads those binary files. If your

 // data is in some other format, then replace this block

 // with appropriate code for reading your format.

// First read I values

 done = false;

 index = 0;

 infile = fopen(ifile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 67

Creating and Downloading Waveform Files
Programming Examples
 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 idata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

// Then read Q values

 index = 0;

 infile = fopen(qfile, “rb”);

 if (infile==NULL) perror (“Error opening file to read”);

 while(!done)

 {

 i1 = fgetc(infile); // read the first byte

 if(i1==EOF) break;

 i2 = fgetc(infile); // read the next byte

 if(i2==EOF) break;

 ivalue=i1+i2*256; // put the two bytes together

 // note that the above format is for a little endian

 // processor such as Intel. Reverse the order for

 // a big endian processor such as Motorola, HP, or Sun

 qdata[index++]=ivalue;

 if(index==MAXSAMPLES) break;

 }

 fclose(infile);

 // Remember the number of samples which were read from the file.

 numsamples = index;

 // Print the I and Q values to a text file. If you are

 // having trouble, look in the file and see if your I and

 // Q data looks correct. Plot the data from this file if

 // that helps you to diagnose the problem.

 FILE *outfile = fopen(ofile, “w”);
68 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
 if (outfile==NULL) perror (“Error opening file to write”);

 for(index=0; index<numsamples; index++)

 {

 fprintf(outfile, “%d, %d\n”, idata[index], qdata[index]);

 }

 fclose(outfile);

 // The E443xB, E4438C, E8267C or E8267D all use big-endian

 // processors. If your software is running on a little-endian

 // processor such as Intel, then you will need to swap the

 // bytes in the data before sending it to the signal generator.

 // The arrays ibuffer and qbuffer are used to hold the data

 // after any byte swapping, shifting or scaling.

 // In this example, we’ll assume that the data is in the format

 // of the E443xB without markers. In other words, the data

 // is in the range 0-16383.

 // 0 gives negative full-scale output

 // 8192 gives 0 V output

 // 16383 gives positive full-scale output

 // If this is not the scaling of your data, then you will need

 // to scale your data appropriately in the next two blocks.

 // ibuffer and qbuffer will hold the data in the E443xB format.

 // No scaling is needed, however we need to swap the byte order

 // on a little endian computer. Remove the byte swapping

 // if you are using a big endian computer.

 for(index=0; index<numsamples; index++)

 {

 int ivalue = idata[index];

 int qvalue = qdata[index];

 ibuffer[index*2] = (ivalue >> 8) & 0xFF; // high byte of i

 ibuffer[index*2+1] = ivalue & 0xFF; // low byte of i

 qbuffer[index*2] = (qvalue >> 8) & 0xFF; // high byte of q

 qbuffer[index*2+1] = qvalue & 0xFF; // low byte of q

 }

 // iqbuffer will hold the data in the E4438C, E8267C, E8267D

 // format. In this format, the I and Q data is interleaved.

 // The data is in the range -32768 to 32767.

 // -32768 gives negative full-scale output
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 69

Creating and Downloading Waveform Files
Programming Examples
 // 0 gives 0 V output

 // 32767 gives positive full-scale output

 // From these ranges, it appears you should offset the

 // data by 8192 and scale it by 4. However, due to the

 // interpolators in these products, it is better to scale

 // the data by a number less than four. Commonly a good

 // choice is 70% of 4 which is 2.8.

 // By default, the signal generator scales data to 70%

 // If you scale the data here, you may want to change the

// signal generator scaling to 100%

// Also we need to swap the byte order on a little endian

 // computer. This code also works for big endian order data

 // since it swaps bytes based on the order.

 for(index=0; index<numsamples; index++)

 {

 int iscaled = 2.8*(idata[index]-8192); // shift and scale

 int qscaled = 2.8*(qdata[index]-8192); // shift and scale

 iqbuffer[index*4] = (iscaled >> 8) & 0xFF; // high byte of i

 iqbuffer[index*4+1] = iscaled & 0xFF; // low byte of i

 iqbuffer[index*4+2] = (qscaled >> 8) & 0xFF; // high byte of q

 iqbuffer[index*4+3] = qscaled & 0xFF; // low byte of q

 }

 // Open a connection to write to the instrument

 INST id=iopen(instOpenString);

 if (!id)

 {

 fprintf(stderr, “iopen failed (%s)\n”, instOpenString);

 return -1;

 }

 // Declare variables which will be used later

 int bytesToSend;

 char s[20];

 char cmd[200];

 // The E4438C, E8267C and E8267D accept the E443xB format.

 // so we can use this next section on any of these signal generators.

 // However the E443xB format only uses 14 bits.

 bytesToSend = numsamples*2; // calculate the number of bytes

 sprintf(s, “%d”, bytesToSend); // create a string s with that number of bytes
70 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
 // The SCPI command has four parts.

 // Part 1 = :MEM:DATA “filename”,

 // Part 2 = length of Part 3 when written to a string

 // Part 3 = length of the data in bytes. This is in s from above.

 // Part 4 = the buffer of data

 // Build parts 1, 2, and 3 for the I data.

 sprintf(cmd, “:MEM:DATA \”ARBI:FILE1\”, #%d%d”, strlen(s), bytesToSend);

 // Send parts 1, 2, and 3

 iwrite(id, cmd, strlen(cmd), 0, 0);

 // Send part 4. Be careful to use the correct command here. In many

 // programming languages, there are two methods to send SCPI commands:

 // Method 1 = stop at the first ‘0’ in the data

 // Method 2 = send a fixed number of bytes, ignoring ‘0’ in the data.

 // You must find and use the correct command for Method 2.

 iwrite(id, ibuffer, bytesToSend, 0, 0);

 // Send a terminating carriage return

 iwrite(id, “\n”, 1, 1, 0);

 // Identical to the section above, except for the Q data.

 sprintf(cmd, “:MEM:DATA \”ARBQ:FILE1\”, #%d%d”, strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);

 iwrite(id, qbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

 printf(“Loaded FILE1 using the E443xB format\n”);

 // The E4438C, E8267C and E8267D have a newer faster format which

 // allows 16 bits to be used. However this format is not accepted in

 // the E443xB. Therefore do not use this next section for the E443xB.

 printf(“Note: Loading FILE2 on a E443xB will cause \”ERROR: 208, I/O error\”\n”);

 // Identical to the I and Q sections above except

 // a) The I and Q data are interleaved

 // b) The buffer of I+Q is twice as long as the I buffer was.

 // c) The SCPI command uses WFM1 instead of ARBI and ARBQ.

 bytesToSend = numsamples*4;

 sprintf(s, “%d”, bytesToSend);

 sprintf(cmd, “:mem:data \”WFM1:FILE2\”, #%d%d”, strlen(s),bytesToSend);

 iwrite(id, cmd, strlen(cmd), 0, 0);
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 71

Creating and Downloading Waveform Files
Programming Examples
 iwrite(id, iqbuffer, bytesToSend, 0, 0);

 iwrite(id, “\n”, 1, 1, 0);

printf(“Loaded FILE2 using the E4438C, E8267C and E8267D format\n”);

return 0;

}

MATLAB Programming Examples

This section contains the following programming examples:

• “Creating and Storing I/Q Data” on page 72
• “Creating and Downloading a Pulse” on page 75

Creating and Storing I/Q Data

On the documentation CD, this programming example’s name is “offset_iq_ml.m.”

This MATLAB programming example follows the same coding algorithm as the C++ programming
example “Creating and Storing Offset I/Q Data—Big and Little Endian Order” on page 51 and
performs the following functions:

• error checking
• data creation
• data normalization
• data scaling
• I/Q signal offset from the carrier (single sideband suppressed carrier signal)
• byte swapping and interleaving for little endian order data
• I and Q interleaving for big endian order data
• binary data file storing to a PC or workstation
• reversal of the data formatting process (byte swapping, interleaving, and normalizing the data)

function main

% Using MatLab this example shows how to

% 1.) Create a simple IQ waveform

% 2.) Save the waveform into the Agilent MXG/ESG/PSG Internal Arb format

% This format is for the N5162A/82A, E4438C, E8267C, and E8267D

% This format will not work with the earlier E443xB ESG

% 3.) Load the internal Arb format file into a MatLab array

% 1.) Create Simple IQ Signal ***

% This signal is a single tone on the upper

% side of the carrier and is usually refered to as

% a Single Side Band Suppressed Carrier (SSBSC) signal.

% It is nothing more than a cosine wavefomm in I

% and a sine waveform in Q.

%

points = 1000; % Number of points in the waveform

cycles = 101; % Determines the frequency offset from the carrier
72 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
phaseInc = 2*pi*cycles/points;

phase = phaseInc * [0:points-1];

Iwave = cos(phase);

Qwave = sin(phase);

% 2.) Save waveform in internal format *********************************

% Convert the I and Q data into the internal arb format

% The internal arb format is a single waveform containing interleaved IQ

% data. The I/Q data is signed short integers (16 bits).

% The data has values scaled between +-32767 where

% DAC Value Description

% 32767 Maximum positive value of the DAC

% 0 Zero out of the DAC

% -32767 Maximum negative value of the DAC

% The internal arb expects the data bytes to be in Big Endian format.

% This is opposite of how short integers are saved on a PC (Little Endian).

% For this reason the data bytes are swapped before being saved.

% Interleave the IQ data

waveform(1:2:2*points) = Iwave;

waveform(2:2:2*points) = Qwave;

%[Iwave;Qwave];

%waveform = waveform(:)’;

% Normalize the data between +-1

waveform = waveform / max(abs(waveform)); % Watch out for divide by zero.

% Scale to use full range of the DAC

waveform = round(waveform * 32767); % Data is now effectively signed short integer values

% waveform = round(waveform * (32767 / max(abs(waveform)))); % More efficient than previous two
steps!

% PRESERVE THE BIT PATTERN but convert the waveform to

% unsigned short integers so the bytes can be swapped.

% Note: Can’t swap the bytes of signed short integers in MatLab.

waveform = uint16(mod(65536 + waveform,65536)); %

% If on a PC swap the bytes to Big Endian

if strcmp(computer, ‘PCWIN’)

 waveform = bitor(bitshift(waveform,-8),bitshift(waveform,8));
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 73

Creating and Downloading Waveform Files
Programming Examples
end

% Save the data to a file

% Note: The waveform is saved as unsigned short integers. However,

% the acual bit pattern is that of signed short integers and

% that is how the Agilent MXG/ESG/PSG interprets them.

filename = ‘C:\Temp\PSGTestFile’;

[FID, message] = fopen(filename,’w’);% Open a file to write data

if FID == -1 error(‘Cannot Open File’); end

fwrite(FID,waveform,’unsigned short’);% write to the file

fclose(FID); % close the file

% 3.) Load the internal Arb format file *********************************

% This process is just the reverse of saving the waveform

% Read in waveform as unsigned short integers.

% Swap the bytes as necessary

% Convert to signed integers then normalize between +-1

% De-interleave the I/Q Data

% Open the file and load the internal format data

[FID, message] = fopen(filename,’r’);% Open file to read data

if FID == -1 error(‘Cannot Open File’); end

[internalWave,n] = fread(FID, ‘uint16’);% read the IQ file

fclose(FID);% close the file

internalWave = internalWave’; % Conver from column array to row array

% If on a PC swap the bytes back to Little Endian

if strcmp(computer, ‘PCWIN’) % Put the bytes into the correct order

 internalWave= bitor(bitshift(internalWave,-8),bitshift(bitand(internalWave,255),8));

end

% convert unsigned to signed representation

internalWave = double(internalWave);

tmp = (internalWave > 32767.0) * 65536;

iqWave = (internalWave - tmp) ./ 32767; % and normalize the data

% De-Interleave the IQ data

IwaveIn = iqWave(1:2:n);

QwaveIn = iqWave(2:2:n);
74 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading a Pulse

NOTE This section applies only to the Agilent MXG and the PSG.

For the Agilent MXG, the maximum frequency is 6 GHz, and the pulsepat.m program’s
SOURce:FREQuency 20000000000 value must be changed as required in the following
programs. For more frequency information, refer to the signal generator’s Data Sheet.

On the documentation CD, this programming example’s name is “pulsepat.m.”

This MATLAB programming example performs the following functions:

• I and Q data creation for 10 pulses
• marker file creation
• data scaling
• downloading using Agilent Waveform Download Assistant functions (see “Using the Download

Utilities” on page 46 for more information)

% Script file: pulsepat.m

%

% Purpose:

%To calculate and download an arbitrary waveform file that simulates a

%simple antenna scan pulse pattern to the Agilent MXG/PSG vector signal generator.

%

% Define Variables:

% n - - counting variable (no units)

% t - - time (seconds)

% rise - - raised cosine pulse rise–time definition (samples)

% on - - pulse on–time definition (samples)

% fall - - raised cosine pulse fall–time definition (samples)

% i - - in–phase modulation signal

% q - - quadrature modulation signal

n=4; % defines the number of points in the rise–time and fall–time

t=–1:2/n:1–2/n; % number of points translated to time

rise=(1+sin(t*pi/2))/2; % defines the pulse rise–time shape

on=ones(1,120); % defines the pulse on–time characteristics

fall=(1+sin(–t*pi/2))/2; % defines the pulse fall–time shape

off=zeros(1,896); % defines the pulse off–time characteristics
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 75

Creating and Downloading Waveform Files
Programming Examples
% arrange the i–samples and scale the amplitude to simulate an antenna scan

% pattern comprised of 10 pulses

i = .707*[rise on fall off...

[.9*[rise on fall off]]...

[.8*[rise on fall off]]...

[.7*[rise on fall off]]...

[.6*[rise on fall off]]...

[.5*[rise on fall off]]...

[.4*[rise on fall off]]...

[.3*[rise on fall off]]...

[.2*[rise on fall off]]...

[.1*[rise on fall off]]];

% set the q–samples to all zeroes

q = zeros(1,10240);

% define a composite iq matrix for download to the Agilent MXG/PSG using the

% Waveform Download Assistant

IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the waveform

Markers = zeros(2,length(IQData)); % fill marker array with zero, i.e no markers set

Markers(1,1) = 1; % set marker to first point of playback

% make a new connection to theAgilent MXG/PSG over the GPIB interface

io = agt_newconnection('gpib',0,19);

% verify that communication with the Agilent MXG/PSG has been established

[status, status_description, query_result] = agt_query(io,'*idn?');

if (status < 0) return; end

% set the carrier frequency and power level on the Agilent MXG/PSG using the Agilent
%Waveform Download Assistant
76 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 20000000000');

[status, status_description] = agt_sendcommand(io, 'POWer 0');

% define the ARB sample clock for playback

sampclk = 40000000;

% download the iq waveform to the PSG baseband generator for playback

[status, status_description] = agt_waveformload(io, IQData, 'pulsepat', sampclk, 'play', 'no_normscale',
Markers);

% turn on RF output power

[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON')

You can test your program by performing a simulated plot of the in–phase modulation signal in
Matlab (see Figure 14- 2 on page 77). To do this, enter plot (i) at the Matlab command prompt.

Figure 14-2 Simulated Plot of In–Phase Signal

The following additional Matlab M–file pulse programming examples are also available on the
Documentation CD–ROM for your Agilent MXG and PSG signal generator:
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 77

Creating and Downloading Waveform Files
Programming Examples
NOTE For the Agilent MXG, the SOURce:FREQuency 20000000000 value must be changed as
required in the following programs. For more information, refer to the Data Sheet.

barker.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple 7–bit barker RADAR signal to the PSG vector signal
generator.

chirp.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using linear FM chirp to
the PSG vector signal generator.

FM.m This programming example calculates and downloads an arbitrary waveform file
that simulates a single tone FM signal with a rate of 6 KHz, deviation of
=/– 14.3 KHz, Bessel null of dev/rate=2.404 to the Agilent MXG/PSG vector signal
generator.

nchirp.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple compressed pulse RADAR signal using non–linear FM
chirp to the PSG vector signal generator.

pulse.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal to the PSG vector signal generator.

pulsedroop.m This programming example calculates and downloads an arbitrary waveform file
that simulates a simple pulse signal with pulse droop to the PSG vector signal
generator.
78 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
Visual Basic Programming Examples

Creating I/Q Data—Little Endian Order

On the documentation CD, this programming example’s name is “Create_IQData_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, uses little endian order
data, and performs the following functions:

• error checking
• I an Q integer array creation
• I an Q data interleaving
• byte swapping to convert to big endian order
• binary data file storing to a PC or workstation

Once the file is created, you can download the file to the signal generator using FTP (see “FTP
Procedures” on page 28).

'***

' Program Name: Create_IQData

' Program Description: This program creates a sine and cosine wave using 200 I/Q data

' samples. Each I and Q value is represented by a 2 byte integer. The sample points are

' calculated, scaled using the AMPLITUDE constant of 32767, and then stored in an array

' named iq_data. The AMPLITUDE scaling allows for full range I/Q modulator DAC values.

' Data must be in 2's complemant, MSB/LSB big-endian format. If your PC uses LSB/MSB

' format, then the integer bytes must be swapped. This program converts the integer

' array values to hex data types and then swaps the byte positions before saving the

' data to the IQ_DataVB file.

'**

Private Sub Create_IQData()

Dim index As Integer

Dim AMPLITUDE As Integer

Dim pi As Double

Dim loByte As Byte

Dim hiByte As Byte

Dim loHex As String

Dim hiHex As String

Dim strSrc As String

Dim numPoints As Integer

Dim FileHandle As Integer

Dim data As Byte

Dim iq_data() As Byte

Dim strFilename As String

strFilename = "C:\IQ_DataVB"

Const SAMPLES = 200 ' Number of sample PAIRS of I and Q integers for the waveform
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 79

Creating and Downloading Waveform Files
Programming Examples
AMPLITUDE = 32767 ' Scale the amplitude for full range of the signal generators

 ' I/Q modulator DAC

pi = 3.141592

Dim intIQ_Data(0 To 2 * SAMPLES - 1) 'Array for I and Q integers: 400

ReDim iq_data(0 To (4 * SAMPLES - 1)) 'Need MSB and LSB bytes for each integer value: 800

'Create an integer array of I/Q pairs

 For index = 0 To (SAMPLES - 1)

 intIQ_Data(2 * index) = CInt(AMPLITUDE * Sin(2 * pi * index / SAMPLES))

 intIQ_Data(2 * index + 1) = CInt(AMPLITUDE * Cos(2 * pi * index / SAMPLES))

 Next index

 'Convert each integer value to a hex string and then write into the iq_data byte array

 'MSB, LSB ordered

 For index = 0 To (2 * SAMPLES - 1)

 strSrc = Hex(intIQ_Data(index)) 'convert the integer to a hex value

 If Len(strSrc) <> 4 Then

 strSrc = String(4 - Len(strSrc), "0") & strSrc 'Convert to hex format i.e "800F

 End If 'Pad with 0's if needed to get 4

 'characters i.e '0' to "0000"

 hiHex = Mid$(strSrc, 1, 2) 'Get the first two hex values (MSB)

 loHex = Mid$(strSrc, 3, 2) 'Get the next two hex values (LSB)

 loByte = CByte("&H" & loHex) 'Convert to byte data type LSB

 hiByte = CByte("&H" & hiHex) 'Convert to byte data type MSB

 iq_data(2 * index) = hiByte 'MSB into first byte

 iq_data(2 * index + 1) = loByte 'LSB into second byte

 Next index

 'Now write the data to the file

FileHandle = FreeFile() 'Get a file number

numPoints = UBound(iq_data) 'Get the number of bytes in the file

Open strFilename For Binary Access Write As #FileHandle Len = numPoints + 1

80 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
On Error GoTo file_error

 For index = 0 To (numPoints)

 data = iq_data(index)

 Put #FileHandle, index + 1, data 'Write the I/Q data to the file

 Next index

Close #FileHandle

Call MsgBox("Data written to file " & strFilename, vbOKOnly, "Download")

Exit Sub

file_error:

 MsgBox Err.Description

 Close #FileHandle

End Sub

Downloading I/Q Data

On the signal generator’s documentation CD, this programming example’s name is
“Download_File_vb.txt.”

This Visual Basic programming example, using Microsoft Visual Basic 6.0, downloads the file created
in “Creating I/Q Data—Little Endian Order” on page 79 into non–volatile memory using a LAN
connection. To use GPIB, replace the instOpenString object declaration with “GPIB::19::INSTR”. To
download the data into volatile memory, change the instDestfile declaration to
“USER/BBG1/WAVEFORM/”.

NOTE The example program listed here uses the VISA COM IO API, which includes the
WriteIEEEBlock method. This method eliminates the need to format the download command
with arbitrary block information such as defining number of bytes and byte numbers. Refer
to “SCPI Command Line Structure” on page 24 for more information.

This program also includes some error checking to alert you when problems arise while trying to
download files. This includes checking to see if the file exists.

'***

' Program Name: Download_File

' Program Description: This program uses Microsoft Visual Basic 6.0 and the Agilent

' VISA COM I/O Library to download a waveform file to the signal generator.

'

' The program downloads a file (the previously created ‘IQ_DataVB’ file) to the signal

' generator. Refer to the Programming Guide for information on binary
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 81

Creating and Downloading Waveform Files
Programming Examples
' data requirements for file downloads. The waveform data 'IQ_DataVB' is

' downloaded to the signal generator's non-volatile memory(NVWFM)

' " /USER/WAVEFORM/IQ_DataVB". For volatile memory(WFM1) download to the

' " /USER/BBG1/WAVEFORM/IQ_DataVB" directory.

'

' You must reference the Agilent VISA COM Resource Manager and VISA COM 1.0 Type

' Library in your Visual Basic project in the Project/References menu.

' The VISA COM 1.0 Type Library, corresponds to VISACOM.tlb and the Agilent

' VISA COM Resource Manager, corresponds to AgtRM.DLL.

' The VISA COM 488.2 Formatted I/O 1.0, corresponds to the BasicFormattedIO.dll

' Use a statement such as "Dim Instr As VisaComLib.FormattedIO488" to

' create the formatted I/O reference and use

' "Set Instr = New VisaComLib.FormattedIO488" to create the actual object.

'**

' IMPORTANT: Use the TCPIP address of your signal generator in the rm.Open

' declaraion. If you are using the GPIB interface in your project use "GPIB::19::INSTR"

' in the rm.Open declaration.

'**

Private Sub Download_File()

' The following four lines declare IO objects and instantiate them.

Dim rm As VisaComLib.ResourceManager

Set rm = New AgilentRMLib.SRMCls

Dim SigGen As VisaComLib.FormattedIO488

Set SigGen = New VisaComLib.FormattedIO488

' NOTE: Use the IP address of your signal generator in the rm.Open declaration

Set SigGen.IO = rm.Open("TCPIP0::000.000.000.000")

Dim data As Byte

Dim iq_data() As Byte

Dim FileHandle As Integer

Dim numPoints As Integer

Dim index As Integer

Dim Header As String

Dim response As String

Dim hiByte As String

Dim loByte As String

Dim strFilename As String

strFilename = "C:\IQ_DataVB" ‘File Name and location on PC

 'Data will be saved to the signal generator’s NVWFM
‘/USER/WAVEFORM/IQ_DataVB directory.
82 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
FileHandle = FreeFile()

On Error GoTo errorhandler

With SigGen 'Set up the signal generator to accept a download

 .IO.Timeout = 5000 'Timeout 50 seconds

 .WriteString "*RST" 'Reset the signal generator.

End With

numPoints = (FileLen(strFilename)) 'Get number of bytes in the file: 800 bytes

ReDim iq_data(0 To numPoints - 1) 'Dimension the iq_data array to the

 'size of the IQ_DataVB file: 800 bytes

Open strFilename For Binary Access Read As #FileHandle 'Open the file for binary read

On Error GoTo file_error

For index = 0 To (numPoints - 1) 'Write the IQ_DataVB data to the iq_data array

 Get #FileHandle, index + 1, data '(index+1) is the record number

 iq_data(index) = data

Next index

 Close #FileHandle 'Close the file

'Write the command to the Header string. NOTE: syntax

 Header = "MEM:DATA ""/USER/WAVEFORM/IQ_DataVB"","

 'Now write the data to the signal generator's non-volatile memory (NVWFM)

 SigGen.WriteIEEEBlock Header, iq_data

 SigGen.WriteString "*OPC?" 'Wait for the operation to complete

 response = SigGen.ReadString 'Signal generator reponse to the OPC? query

 Call MsgBox("Data downloaded to the signal generator", vbOKOnly, "Download")

 Exit Sub

errorhandler:

 MsgBox Err.Description, vbExclamation, "Error Occurred", Err.HelpFile, Err.HelpContext

Exit Sub

file_error:

 Call MsgBox(Err.Description, vbOKOnly) 'Display any error message

 Close #FileHandle

End Sub
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 83

Creating and Downloading Waveform Files
Programming Examples
HP Basic Programming Examples

This section contains the following programming examples:

• “Creating and Downloading Waveform Data Using HP BASIC for Windows®” on page 84

• “Creating and Downloading Waveform Data Using HP BASIC for UNIX” on page 86

• “Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows” on page 88

• “Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX” on page 89

Creating and Downloading Waveform Data Using HP BASIC for Windows®

On the documentation CD, this programming example’s name is “hpbasicWin.txt.”

The following program will download a waveform using HP Basic for Windows into volatile ARB
memory. The waveform generated by this program is the same as the default SINE_TEST_WFM
waveform file available in the signal generator’s waveform memory. This code is similar to the code
shown for BASIC for UNIX but there is a formatting difference in line 130 and line 140.

To download into non–volatile memory, replace line 190 with:

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "BASIC_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data Generated"

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719

140 ASSIGN @PSGb TO 719;FORMAT MSB FIRST

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

Windows and MS Windows are U.S registered trademarks of Microsoft Corporation.
84 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @PSG USING "#,K";Ndigits$

210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This IO path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 85

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading Waveform Data Using HP BASIC for UNIX

On the documentation CD, this programming example’s name is “hpbasicUx.txt.”

The following program shows you how to download waveforms using HP Basic for UNIX. The code is
similar to that shown for HP BASIC for Windows, but there is a formatting difference in line 130 and
line 140.

To download into non–volatile memory, replace line 190 with:

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""NVWFM:testfile"", #"

As discussed at the beginning of this section, I and Q waveform data is interleaved into one file in
2’s compliment form and a marker file is associated with this I/Q waveform file.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

10 ! RE-SAVE "UNIX_file"

20 Num_points=200

30 ALLOCATE INTEGER Int_array(1:Num_points*2)

40 DEG

50 FOR I=1 TO Num_points*2 STEP 2

60 Int_array(I)=INT(32767*(SIN(I*360/Num_points)))

70 NEXT I

80 FOR I=2 TO Num_points*2 STEP 2

90 Int_array(I)=INT(32767*(COS(I*360/Num_points)))

100 NEXT I

110 PRINT "Data generated "

120 Nbytes=4*Num_points

130 ASSIGN @PSG TO 719;FORMAT ON

140 ASSIGN @PSGb TO 719;FORMAT OFF

150 Nbytes$=VAL$(Nbytes)

160 Ndigits=LEN(Nbytes$)

170 Ndigits$=VAL$(Ndigits)

180 WAIT 1

190 OUTPUT @PSG USING "#,K";":MMEM:DATA ""WFM1:data_file"",#"

200 OUTPUT @PSG USING "#,K";Ndigits$

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End–of–Line to terminate the transmission.

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
86 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
210 OUTPUT @PSG USING "#,K";Nbytes$

220 WAIT 1

230 OUTPUT @PSGb;Int_array(*)

240 WAIT 2

241 OUTPUT @PSG;END

250 ASSIGN @PSG TO *

260 ASSIGN @PSGb TO *

270 PRINT

280 PRINT "*END*"

290 END

Program Comments

10: Program file name

20: Sets the number of points in the waveform.

30: Allocates integer data array for I and Q waveform points.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up first loop for I waveform points.

60: Calculate and interleave I waveform points.

70: End of loop

80 Sets up second loop for Q waveform points.

90: Calculate and interleave Q waveform points.

100: End of loop.

120: Calculates number of bytes in I/Q waveform.

130: Opens an IO path to the signal generator using GPIB. 7 is the address of the GPIB card in the computer,
and 19 is the address of the signal generator. This IO path is used to send ASCII data to the signal
generator.

140: Opens an IO path for sending binary data to the signal generator.

150: Creates an ASCII string representation of the number of bytes in the waveform.

160 to 170: Finds the number of digits in Nbytes.

190: Sends the first part of the SCPI command, MEM:DATA along with the name of the file, data_file, that
will receive the waveform data. The name, data_file, will appear in the signal generator’s memory
catalog.

200 to 210: Sends the rest of the ASCII header.

230: Sends the binary data. Note that PSGb is the binary IO path.

240: Sends an End–of–Line to terminate the transmission.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 87

Creating and Downloading Waveform Files
Programming Examples
Creating and Downloading E443xB Waveform Data Using HP BASIC for Windows

On the documentation CD, this programming example’s name is “e443xb_hpbasicWin2.txt.”

The following program shows you how to download waveforms using HP Basic for Windows into
volatile ARB memory. This program is similar to the following program example as well as the
previous examples. The difference between BASIC for UNIX and BASIC for Windows is the way the
formatting, for the most significant bit (MSB) on lines 110 and 120, is handled.

To download into non–volatile ARB memory, replace line 160 with:

160 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBI:testfile"", #"

and replace line 210 with:

210 OUTPUT @ESG USING "#,K";":MMEM:DATA ""NVARBQ:testfile"", #"

First, the I waveform data is put into an array of integers called Iwfm_data and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Nbytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in Iwfm_data,
since an integer is 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP Basic to output the following numbers or strings in
the default format.

10 ! RE-SAVE "ARB_IQ_Win_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719

120 !ASSIGN @Esgb TO 719;FORMAT MSB FIRST

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

250 to 260: Closes the connections to the signal generator.

290: End the program.

Program Comments (Continued)
88 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Programming Examples
190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Creating and Downloading E443xB Waveform Data Using HP Basic for UNIX

On the documentation CD, this programming example’s name is “e443xb_hpbasicUx2.txt.”

The following program shows you how to download waveforms using HP BASIC for UNIX. It is similar
to the previous program example. The difference is the way the formatting for the most significant bit
(MSB) on lines is handled.

First, the I waveform data is put into an array of integers called Iwfm_data and the Q waveform
data is put into an array of integers called Qwfm_data. The variable Nbytes is set to equal the
number of bytes in the I waveform data. This should be twice the number of integers in Iwfm_data,
since an integer is represented 2 bytes. Input integers must be between 0 and 16383.

In the Output commands, USING “#,K” formats the data. The pound symbol (#) suppresses the
automatic EOL (End of Line) output. This allows multiple output commands to be concatenated as if
they were a single output. The “K” instructs HP BASIC to output the following numbers or strings in
the default format.

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300: See the table on page 85 for program comments.
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 89

Creating and Downloading Waveform Files
Programming Examples
10 ! RE-SAVE "ARB_IQ_file"

20 Num_points=200

30 ALLOCATE INTEGER Iwfm_data(1:Num_points),Qwfm_data(1:Num_points)

40 DEG

50 FOR I=1 TO Num_points

60 Iwfm_data(I)=INT(8191*(SIN(I*360/Num_points))+8192)

70 Qwfm_data(I)=INT(8191*(COS(I*360/Num_points))+8192)

80 NEXT I

90 PRINT "Data Generated"

100 Nbytes=2*Num_points

110 ASSIGN @Esg TO 719;FORMAT ON

120 ASSIGN @Esgb TO 719;FORMAT OFF

130 Nbytes$=VAL$(Nbytes)

140 Ndigits=LEN(Nbytes$)

150 Ndigits$=VAL$(Ndigits)

160 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBI:file_name_1"",#"

170 OUTPUT @Esg USING "#,K";Ndigits$

180 OUTPUT @Esg USING "#,K";Nbytes$

190 OUTPUT @Esgb;Iwfm_data(*)

200 OUTPUT @Esg;END

210 OUTPUT @Esg USING "#,K";":MMEM:DATA ""ARBQ:file_name_1"",#"

220 OUTPUT @Esg USING "#,K";Ndigits$

230 OUTPUT @Esg USING "#,K";Nbytes$

240 OUTPUT @Esgb;Qwfm_data(*)

250 OUTPUT @Esg;END

260 ASSIGN @Esg TO *

270 ASSIGN @Esgb TO *

280 PRINT

290 PRINT "*END*"

300 END

Program Comments

10: Program file name.

20 Sets the number of points in the waveform.

30: Defines arrays for I and Q waveform points. Sets them to be integer arrays.

40: Sets HP BASIC to use degrees for cosine and sine functions.

50: Sets up loop to calculate waveform points.

60: Calculates I waveform points.

70: Calculates Q waveform points.
90 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
Troubleshooting Waveform Files

80: End of loop.

160 and 210: The I and Q waveform files have the same name

90 to 300 See the table on page 87 for program comments.

Symptom Possible Cause

ERROR 224, Text file busy

Attempting to download a waveform that has the same name as the waveform
currently being played by the signal generator.

To solve the problem, either change the name of the waveform being downloaded
or turn off the ARB.

ERROR 628, DAC over range The amplitude of the signal exceeds the DAC input range. The typical causes are
unforeseen overshoot (DAC values within range) or the input values exceed the
DAC range.

To solve the problem, scale or reduce the DAC input values. For more information,
see “DAC Input Values” on page 6.

On the Agilent MXG, this error can occur if an encrypted file (.SECUREWAVE) is
being downloaded to the signal generator from a PC or USB Media with a different
suffix (i.e. not .SECUREWAVE).

To solve the problem, use the Use as or Copy File to Instrument softkey menus to
download the encrypted file to the instrument. For more information, see
“Encrypted I/Q Files and the Securewave Directory (Agilent MXG)” on page 23.

ERROR 629, File format invalid The signal generator requires a minimum of 60 samples to build a waveform and
the same number of I and Q data points.

ERROR –321, Out of memory

There is not enough space in the ARB memory for the waveform file being
downloaded.

To solve the problem, either reduce the file size of the waveform file or delete
unnecessary files from ARB memory. Refer to “Waveform Memory” on page 16.

No RF Output The marker RF blanking function may be active. To check for and turn RF blanking
off, refer to “Configuring the Pulse/RF Blank (Agilent MXG)” on page 92 and
“Configuring the Pulse/RF Blank (ESG/PSG)” on page 92. This problem occurs
when the file header contains unspecified settings and a previously played
waveform used the marker RF blanking function.

For more information on the marker functions, see the User’s Guide.

Undesired output signal Check for the following:

• The data was downloaded in little endian order. See “Little Endian and Big
Endian (Byte Order)” on page 4 for more information.

• The waveform contains an odd number of samples. An odd number of samples
can cause waveform discontinuity. See “Waveform Phase Continuity” on
page 13 for more information.

Program Comments (Continued)
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 91

Creating and Downloading Waveform Files
Troubleshooting Waveform Files
Configuring the Pulse/RF Blank (Agilent MXG)

Configuring the Pulse/RF Blank (ESG/PSG)

For details on each key, use the key help. Refer to Programming Guide and the User’s Guide. For additional SCPI command information,
refer to the SCPI Command Reference.

If the default marker is used,
toggle the Pulse/RF Blank (None)
softkey to None. For more
information on markers, refer to
“Marker File” on page 11.

SCPI commands:
[:SOURce]:RADio[1]:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4
[:SOURce]:RADio[1]:ARB:MDEStination:PULSe?

For details on each key, use the Key and Data Field Reference. For additional SCPI command information, refer to the SCPI Command
Reference.

If the default marker is
used, toggle the
Pulse/RF Blank (None)
softkey to None. For
more information on
markers, refer to
“Marker File” on
page 11.

Mode Setup
Hardkey

SCPI commands:
[:SOURce]:RADio:ARB:MDEStination:PULSe NONE|M1|M2|M3|M4
[:SOURce]:RADio:ARB:MDEStination:PULSe?
92 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Index
Numerics
2’s complement data format, 9

A
Agilent

e8663b
global settings, configuring, 92

esg
global settings, configuring, 92
memory allocation, non- volatile memory, 20
Pulse/RF Blank, configuring, 92
Waveform Download Assistant, 47

mxg
global settings, configuring, 92
memory allocation, non- volatile memory, 19
Waveform Download Assistant, 47

psg
global settings, configuring, 92
memory allocation, non- volatile memory, 20
Pulse/RF Blank, configuring, 92
Waveform Download Assistant, 47

Pulse/RF Blank, configuring, 92
Signal Studio, 46
Signal Studio Toolkit, 2

ARB waveform file downloads
data requirements

waveform, 3
download utilities, 2
waveform download utilities, 46

B
Baseband Studio

for Waveform Capture and Playback, 14
big- endian

byte order, interleaving and byte swapping, 34
changing byte order, 6
example, programming, 79

bits and bytes, 3
byte order

byte swapping, 6
changing byte order, 6
interleaving I/Q data, 34

C
C++

programming examples, 51
creating waveform data

C++, using, 31
saving to a text file for review, 34

creating waveform files
overview, 1

D
DAC input values, 6
data

encryption, 23
format, e443xb signal generator, 48
requirements, waveform, 3

decryption, 23
download

utilities
Agilent Signal Studio, Toolkit, 2
IntuiLink for signal generators, 2
Waveform Download Assistant, 2

waveform data
advanced programming languages, 40
commands, 22
e443xb signal generator files, 7, 47
encrypted files for extraction, 27
encrypted files for no extraction, 25
FTP procedures, 28
memory locations, 23
overview, 1, 37
simulation software, 38
unencrypted files for extraction, 25
unencrypted files for no extraction, 25

downloading
C++, using, 51
HP Basic, 84
MATLAB, 75
Visual Basic, 81

E
e443xb

files
downloading, 47, 50
formatting, 7, 48
programming examples, 66
storing, 48

programming examples, 84
encryption

downloading
for extraction, 27
for no extraction, 25

extracting waveform data, 26, 27
I/Q files, 23
I/Q files, agilent mxg (only), 23
securewave directory

agilent mxg (only), 23
esg, 23
psg, 23

waveform data, 22
even number of samples, 13
example programs See programming examples, 50
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 93

Index
F
files

decryption, 23
encryption, 22, 23
encryption, agilent mxg (only), 23
extraction commands and file paths, 24
header information, 11, 23
transfer methods, 23
waveform download utilities, 46
waveform structure, 11

FTP
downloading and extracting files, commands, 26–27
methods, 23
procedures for downloading files, 28
web server procedure, 30

G
global settings

Agilent mxg, 92
e8663b, 92
esg, 92
psg, 92

H
hexadecimal data, 79
HP Basic

programming examples, 84

I
I/Q data

creating, advanced programming languages, 31
encryption, 22, 23
encryption, agilent mxg (only), 23
interleaving

big endian and little endian, 34
byte swapping, 34
little endian, byte swapping, 34
waveform data, creating, 9

memory locations, 17, 36
saving to a text file for review, 34
scaling, 7
waveform structure, 13

input values, DAC, 6
interleaving, See I/Q data, 9
IntuiLink for signal generators, 46

L
LAN

establishing a connection, 38, 40
little- endian

byte order, interleaving and byte swapping, 34
loading waveforms, 43

LSB, 4
LSB/MSB, 79

M
marker file, 11, 23
MATLAB

download utility, 47
downloading data, 38
programming examples, 72

media
external

waveform memory, 16
internal

waveform memory, 16
memory

See also media
allocation, 18
defined, 16
locations, 16
non- volatile (NVWFM), 23
size, 20
volatile (WFM1), 23

MSB, 4

N
n5162a/82a

Pulse/RF Blank configuring, 92
non- volatile memory

memory allocation
Agilent mxg, 19
esg, 20
psg, 20

securewave directory, 23
waveform, 16

P
PC, 79
phase discontinuity

avoiding, 14
Baseband Studio, for Waveform Capture and Playback,

14
samples, 15
waveform, 13

phase distortion, 13
playing waveforms, 43
programming

creating waveform data, 31
downloading waveform data, 37
little endian order, byte swapping, 34

programming examples
C++, 51
e443xb

files, 66
94 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

Index

e443xb files, 84
HP Basic, 84
introduction, 50
MATLAB, 72
Visual Basic, 79, 81

Pulse/RF Blank
esg setting, 92
n5162a/82a, setting, 92
psg setting, 92
setting, 92

S
samples

even number, 13
waveform, 13

scaling I/Q data, 7
SCPI

file transfer methods, 23
SCPI commands

command line structure, 24
download e443xb files, 50
encrypted files, 25, 27
extraction, 22, 24, 25, 27
no extraction, 24, 25
unencrypted files, 25

securewave directory
decryption, file, 23
downloading encrypted files, 27
downloads, file, 23
encryption, file, 23
extracting waveform data, 26, 27
extraction, file, 23

sequences
waveforms, building, 45

setting
Pulse/RF Blank

e8663b, 92
esg, 92
n5162a/82a, 92
psg, 92

signal generator
Waveform Download Assistant, 47

Signal Studio Toolkit, 2, 46
simulation software, 38

T
Toolkit, Signal Studio, 2, 46

U
unencrypted files

downloading for extraction, 25
downloading for no extraction, 25

usb media

file extensions, 19

V
verifying waveforms, 43
VISA

library, 79
Visual Basic

programming examples, 79
volatile memory

file, decryption, 23
file, encryption, 23
memory allocation, 18
securewave directory, 23

memory, volatile (WFM1), 23
waveform, 16

W
waveform data

2’s complement data format, 9
bits and bytes, 3
byte order, 6
byte swapping, 6
commands for downloading and extracting, 22–30
creating, 31
DAC input values, 6
data requirements, 3
encrypted data, 19
encryption, 22–27
explained, 3
extracting, 22, 25–26
I and Q interleaving, 9
LSB and MSB, 4
saving to a text file for review, 34

waveform download
utilities

differences, 46
waveform downloads

advanced programming languages, using, 40
download utilities, using, 46
HP BASIC, using, 84–89
memory, 16

allocation, 18
size, 20
volatile and non- volatile, 16

samples, 13
simulation software, using, 38
structure, 13
troubleshooting files, 91
using advanced programming languages, 40
with Visual Basic 6.0, 81

waveform files
creating, 1
downloading, 1
Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files 95

Index

waveform generation

C++, 51
HP Basic, using, 84
MATLAB, using, 72
Visual Basic 6.0, using, 79

waveforms
loading, 43
playing, 43
sequences, building, 45
verifying, 43

WriteIEEEBlock, 81
96 Agilent E4438C, E8267D, N5162A, and N5182A Signal Generators Creating and Downloading Waveform Files

	Title Page
	Notices

	Contents
	Creating and Downloading Waveform Files
	Section - Overview of Downloading and Extracting Waveform Files
	Section - Waveform Data Requirements

	Section - Understanding Waveform Data
	Section - Bits and Bytes
	Section - LSB and MSB (Bit Order)
	Section - Little Endian and Big Endian (Byte Order)
	Section - Byte Swapping
	Section - DAC Input Values
	Section - 2’s Complement Data Format
	Section - I and Q Interleaving

	Section - Waveform Structure
	Section - File Header
	Section - Marker File
	Section - I/Q File
	Section - Waveform

	Section - Waveform Phase Continuity
	Section - Phase Discontinuity, Distortion, and Spectral Regrowth
	Section - Avoiding Phase Discontinuities

	Section - Waveform Memory
	Section - Memory Allocation
	Section - Memory Size

	Section - Commands for Downloading and Extracting Waveform Data
	Section - Waveform Data Encryption
	Section - File Transfer Methods
	Section - SCPI Command Line Structure
	Section - Commands and File Paths for Downloading and Extracting Waveform Data
	Section - FTP Procedures

	Section - Creating Waveform Data
	Section - Code Algorithm

	Section - Downloading Waveform Data
	Section - Using Simulation Software
	Section - Using Advanced Programming Languages

	Section - Loading, Playing, and Verifying a Downloaded Waveform
	Section - Loading a File from Non–Volatile Memory
	Section - Playing the Waveform
	Section - Verifying the Waveform
	Section - Building and Playing Waveform Sequences

	Section - Using the Download Utilities
	Section - Downloading E443xB Signal Generator Files
	Section - E443xB Data Format
	Section - Storage Locations for E443xB ARB files
	Section - SCPI Commands

	Section - Programming Examples
	Section - C++ Programming Examples
	Section - MATLAB Programming Examples
	Section - Visual Basic Programming Examples
	Section - HP Basic Programming Examples

	Section - Troubleshooting Waveform Files
	Section - Configuring the Pulse/RF Blank (Agilent MXG)
	Section - Configuring the Pulse/RF Blank (ESG/PSG)

	Index

